K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

\(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)

\(\Leftrightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\left(1\right)\)

\(a^{2001}+b^{2001}=b^{2002}+a^{2002}\)

\(\Leftrightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\left(2\right)\)

Trừ vế theo vế ta được:

\(\left(a-1\right)\left(a^{2001}-a^{2000}\right)+\left(b-1\right)\left(b^{2001}-b^{2000}\right)=0\)

\(\Leftrightarrow\left(a-1\right)a^{2000}\left(a-1\right)+\left(b-1\right)b^{2000}\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2a^{2000}+\left(b-1\right)^2b^{2000}=0\)

Mà a,b dương\(\Rightarrow a=b=1\)

\(\Rightarrow a^{2011}+b^{2011}=2\)

25 tháng 1 2017

a2011 + b2011 = 1 + 1 = 2

25 tháng 1 2017

đơn giản bạn ơi, 

cặp a,b có hai trường hơp :

a                             0         0          1          1

b                             0          1           0        1

a^2011 + b ^2011       0           1         1       2

13 tháng 3 2018

số ab này bằng 1 hoặc bằng 0 nên a^2011+b^2011 bằng 0 hoặc 1 và tất nhên nó băng mấy cái trên

13 tháng 3 2018

a;b \(\in\){0;1}

TH1: a;b =0

a2011+b2011=0^2011+0^2011=0

TH2: a;b=1

a^2011 + b^2011 = 1 + 1 = 2

31 tháng 7 2018

Ta có: \(a^{2002}+b^{2002}=\left(a^{2001}+b^{2001}\right)\left(a+b\right)-a.b\left(a^{2000}+b^{2000}\right)\) (1)

Vì \(a^{2002}+b^{2002}=a^{2001}+b^{2001}=a^{2000}+b^{2000}\)

\(\Rightarrow\left(1\right)\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Cả hai TH ta đều có a=b=1

\(\Rightarrow a^{2011}+b^{2011}=1+1=2\)

P/s: Nếu thấy khó hiểu cách này thì bạn có thể tham khảo:

Câu hỏi của Mai Diễm My - Toán lớp 8 | Học trực tuyến

31 tháng 7 2018

Tớ vừa làm => tham khảo link này:

Câu hỏi của vinh siêu nhân - Toán lớp 8 | Học trực tuyến

5 tháng 2 2017

Câu hỏi của Rarah Venislan - Toán lớp 8 - Học toán với OnlineMath tương tự, trc mk còn giải 1 bài y hệt mà lâu lắm r`, ngại tìm nếu bn rảnh thì vào đây tìm nhé https://olm.vn/?g=page.display.showtrack&id=424601&limit=0

6 tháng 2 2017

Câu hỏi của Nguyễn Lê Nhật Linh - Toán lớp 9 - Học toán với OnlineMath tim thay r` gan y het

15 tháng 2 2018

Từ đề ra : \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)

=> Chuyển vế và nhóm lại ta đc : \(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\) (1)

Tương tự ta có : \(a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)

Trừ 2 cho 1 : \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\) ( bạn phân tích là đc như vậy )

Vì các số hạng trên đều \(\ge0\) 

Nên : biểu thức bằng = khi các số hạng = 0 

Bạn cho các  số hạng =0 rồi tính ra đc : 

\(\orbr{\begin{cases}a=0\\a=1\end{cases}}\) và \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)

Vì a,b dương nên \(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

=> \(a^{2011}+b^{2011}=1+1=2\)

25 tháng 12 2016

\(a^{2000}+b^{2000}=a.a^{2000}+b.b^{2000}=a^2.a^{2000}+b^2.b^{2000}\)

a=b={0,1} là nghiệm 

xét a,b \(\ne\left\{0,1\right\}\)

\(\left(1-a\right).a^{2000}=\left(b-1\right).b^{2000}\Leftrightarrow\frac{1-a}{b-1}=\left(\frac{b}{a}\right)^{2000}\)(1)

\(\left(1-a^2\right).a^{2000}=\left(b^2-1\right).b^{2000}\Rightarrow\frac{1-a^2}{b^2-1}=\left(\frac{b}{a}\right)^{2000}\)(2)

(1)&(2)=>\(\frac{1-a}{b-1}=\frac{1-a^2}{b^2-1}\Rightarrow\left(1-a\right)\left(b+1\right)=\left(1-a\right)\left(1+a\right)\Rightarrow a=b\)

Thay vào phương trình đầu: => a=b={0,1) a, b dương => a=b=1

a^20011+b^20011=2

25 tháng 12 2016

\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Leftrightarrow a^{2000}+b^{2000}=a\cdot a^{2000}+b\cdot b^{2000}=a^2\cdot a^{2000}+b^2\cdot b^{2000}\)

Mà a,b >0 

\(\Rightarrow\hept{\begin{cases}a=a^2=1\\b=b^2=1\end{cases}\Rightarrow a=b=1}\)

Vậy \(a^{2011}+b^{2011}=1+1=2\)

True or False??!?

30 tháng 4 2017

Từ đề bài ta có:

\(\left(a^{2001}+b^{2001}\right)\left(a+b\right)-\left(a^{2000}+b^{2000}\right)ab=a^{2002}+b^{2002}\)

\(\Leftrightarrow\left(a+b\right)-ab=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Với \(a=1\Rightarrow b^{2000}=b^{2001}\Leftrightarrow\orbr{\begin{cases}b=1\\b=0\end{cases}}\) (loại)

Với \(b=1\Rightarrow a^{2000}=a^{2001}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}}\) (loại)

Vậy \(a=b=1\Rightarrow a^{2011}+b^{2011}=1+1=2\)