K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

MB=7cm

MA=2cm

25 tháng 3 2020

Câu này không phải toán 7 rồi

MB=7cm, MA=2cm

17 tháng 8 2017

MB <M'B'

23 tháng 6 2017

A B M C D E x

a) Mx\(⊥\)AB, C\(\in\)Mx, MC=MA \(\Rightarrow\)\(\Delta\)AMC vuông cân tại M \(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}=45^0\)

Tương tự \(\Delta\)BMD vuông cân tại M\(\Rightarrow\widehat{MBD}=\widehat{MDB}=45^0\)

\(\Rightarrow\widehat{MAC}=\widehat{MDB}=45^0\)hay \(\widehat{MAC}=\widehat{CDE}=45^0\)

\(\Rightarrow\Delta CED\)vuông cân tại E \(\Rightarrow AE⊥BD\)(đpcm)

b) BD \(⊥\)AC tại E, MD\(⊥\)AB => D là trực tâm của \(\Delta\)ABC.

13 tháng 3 2020

Gọi I là trung điểm của BC

Trên tia đối của IM lấy điểm N sao cho IM = IN

Dễ chứng minh \(\Delta\)IAM = \(\Delta\)IDN (c.g.c) nên MA = MD (hai cạnh tương ứng) (1)

C nằm trong \(\Delta\)MDN nên MC + CN < MD + ND (2)

Thật dễ dàng khi c/m: \(\Delta\)IBM = \(\Delta\)ICN (c.g.c) => MB = NC (hai cạnh tương ứng)  (3)

Từ (1), (2) và (3) suy ra MA + MD > MB + MC (đpcm)

25 tháng 11 2015

đoạn thẳng MA và đoạn thẳng MB bằng nhau

25 tháng 11 2015

Đặt AB vương góc với đường trung trực tại E

xét 2 TG AME và BME, ta có

AE=BE (gt) AEM=BEM=90 độ ME cạnh chung

suy ra TG AME=TG BME (cgc)

suy ra MA=MB

23 tháng 7 2017

A D B C M M

Đề có thể sai nhé bạn

5 tháng 4 2019

A B C M D

a)

Áp dụng bất đẳng thức tam giác,ta có:

\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)

b)

Gọi giao điểm của BM cắt AC tại D.

Do điểm M nằm trong tam giác ABC nên D thuộc AC.

\(\Rightarrow AC=AD+DC\)

Áp dụng bất đẳng thức tam giác vào tam giác ABD có:

BD<AB+AD => MB+MD<AB+AD(1)

Áp dụng bất đẳng thức tam giác vao tam giác MDC có:

MC<DC+MD(2)

Cộng vế theo vế của (1) với (2) ta có:

\(MB+MD+MC< AB+AD+DC+MD\)

\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)

\(\Rightarrow MB+MC< AB+AC\left(3\right)\)

chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)

Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)

20 tháng 4 2017

Goi H là trung giao điểm của đường trung trực với đoạn AB,∆AHM=∆BHM(c .g.c )

Vậy MA= MB(hai cạnh tương ứng).