Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B M C D E x
a) Mx\(⊥\)AB, C\(\in\)Mx, MC=MA \(\Rightarrow\)\(\Delta\)AMC vuông cân tại M \(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}=45^0\)
Tương tự \(\Delta\)BMD vuông cân tại M\(\Rightarrow\widehat{MBD}=\widehat{MDB}=45^0\)
\(\Rightarrow\widehat{MAC}=\widehat{MDB}=45^0\)hay \(\widehat{MAC}=\widehat{CDE}=45^0\)
\(\Rightarrow\Delta CED\)vuông cân tại E \(\Rightarrow AE⊥BD\)(đpcm)
b) BD \(⊥\)AC tại E, MD\(⊥\)AB => D là trực tâm của \(\Delta\)ABC.
Gọi I là trung điểm của BC
Trên tia đối của IM lấy điểm N sao cho IM = IN
Dễ chứng minh \(\Delta\)IAM = \(\Delta\)IDN (c.g.c) nên MA = MD (hai cạnh tương ứng) (1)
C nằm trong \(\Delta\)MDN nên MC + CN < MD + ND (2)
Thật dễ dàng khi c/m: \(\Delta\)IBM = \(\Delta\)ICN (c.g.c) => MB = NC (hai cạnh tương ứng) (3)
Từ (1), (2) và (3) suy ra MA + MD > MB + MC (đpcm)
Đặt AB vương góc với đường trung trực tại E
xét 2 TG AME và BME, ta có
AE=BE (gt) AEM=BEM=90 độ ME cạnh chung
suy ra TG AME=TG BME (cgc)
suy ra MA=MB
A B C M D
a)
Áp dụng bất đẳng thức tam giác,ta có:
\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)
b)
Gọi giao điểm của BM cắt AC tại D.
Do điểm M nằm trong tam giác ABC nên D thuộc AC.
\(\Rightarrow AC=AD+DC\)
Áp dụng bất đẳng thức tam giác vào tam giác ABD có:
BD<AB+AD => MB+MD<AB+AD(1)
Áp dụng bất đẳng thức tam giác vao tam giác MDC có:
MC<DC+MD(2)
Cộng vế theo vế của (1) với (2) ta có:
\(MB+MD+MC< AB+AD+DC+MD\)
\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)
\(\Rightarrow MB+MC< AB+AC\left(3\right)\)
chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)
Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)
MB=7cm
MA=2cm
Câu này không phải toán 7 rồi
MB=7cm, MA=2cm