Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)
~*~*~*~*~
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)
\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng
=> (1) đúng
Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).
Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:
\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)
Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)
ai tick cho mik , mik tick lại cho !^__<nhớ giải câu hỏi nhé ! thanks
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)
\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)
\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)
\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)
Theo hệ quả quen thuộc của BĐT Cô-si:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)
Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)
(do \(a+b+c\leq 3)\)
Do đó: \(B_{\min}=\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
-Hoặc có thể đề bạn sai
hiểu đơn giản thì có thể hiểu như sau:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc>abc\)
-Không có a;b;c thỏa mãn
A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)
= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
Áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
⇔\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
⇔\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)
⇔ A ≥4
=> Min A =4
dấu "=" xảy ra khi
\(\dfrac{a}{b}=\dfrac{b}{a}\)
⇔a2=b2
⇔a=b
vậy Min A =4 khi a=b
Lời giải:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)
\(\Rightarrow (a+b)(c+a)(c+b)=0\)
Do đó:
\(A=(a^3+b^3)(b^3+c^3)(c^3+a^3)\)
\(=(a+b)(a^2-ab+b^2)(b+c)(b^2-bc+c^2)(c+a)(c^2-ca+a^2)\)
\(=(a+b)(c+a)(c+b)[(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)]=0\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^3\cdot\dfrac{1}{a}+b^3\cdot\dfrac{1}{b}+c^3\cdot\dfrac{1}{c}\right)^2\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)
Cần chỉ ra \(\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\left(a,b,c>0\right)\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Cauchy-Schwarz 2 bộ (left(sqrt{a^3};sqrt{b^3};sqrt{c^3} ight);left(sqrt{dfrac{1}{a}};sqrt{dfrac{1}{b}};sqrt{dfrac{1}{c}} ight))
(left(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(sqrt{dfrac{a^3.1}{a}}+sqrt{dfrac{b^3.1}{b}}+sqrt{dfrac{c^3.1}{c}} ight)^2)
(Leftrightarrowleft(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(a^2+b^2+c^2 ight)^2)
Bđt cần c/m tương đương với :
(left(a^2+b^2+c^2 ight)^2geleft(a+b+c ight)^2)
(Leftrightarrow a^2+b^2+c^2ge a+b+c) ( vì a,b,c > 0 )
Phản đề :
Xét bộ (left(a;b;c ight)=left(dfrac{1}{4};dfrac{1}{4};dfrac{1}{4} ight))
(Leftrightarrowdfrac{3}{16}gedfrac{3}{4}left(sai ight))
Vậy bđt cần cm không tồn tại với a , b , c > 0
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{a^3}{(a+1)(b+1)}+\frac{a+1}{8}+\frac{b+1}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
\(\frac{b^3}{(b+1)(c+1)}+\frac{b+1}{8}+\frac{c+1}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)
\(\frac{c^3}{(c+1)(a+1)}+\frac{c+1}{8}+\frac{a+1}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{a+b+c+3}{4}\geq \frac{3}{4}(a+b+c)\)
\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{3}{2}\geq \frac{9}{4}\)
\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}\geq \frac{3}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)