Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}=\left(\frac{a+b}{c+d}\right)^{2016}\left(1\right)\)
\(\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\left(2\right)\)
Từ (1) và (2) => đpcm
Lời giải:
Ta thấy:
\(A+B=2x^{2016}-5xy+7y^2+2017+(-x^{2016}+5xy-4y^2-2017)\)
\(=x^{2016}+3y^2\)
Vì \(x^{2016}, y^2\geq 0, \forall x,y\in\mathbb{R}\Rightarrow A+B=x^{2016}+3y^2\geq 0\)
Nếu \(A,B\) cùng âm thì $A+B$ âm, vô lý với điều trên
Do đó $A,B$ không thể cùng có giá trị âm
a2014+b2014 =a2015+b2015=a2016 +b2016 khi va chi khi a va b = 1
dễ mà
vì a/b=c/d (1)
=>a/b=c/d=a-c/b-d=(a-c)2016/(b-d)2016(*)
cũng từ (1) =>a/b=c/d=a2016/b2016=c2016/d2016=a2016+c2016/b2016+d2016 (**)
từ (*) và (**) => ............( bạn tự vt nha)