Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Hay \(a=b=c\)
Thay vào bài toán:
\(\left(2a+70b+1945c\right)^{2018}=\left(2a+70a+1945a\right)^{2018}=2017a^{2018}\)
Lại có:
\(2017^{2018}.a^{39}.b^{13}.b^{1975}=2017^{2018}.a^{39}.a^{13}.a^{1975}=2017^{2018}.a^{2018}=2017a^{2018}\)Ta có đpcm
Chứng minh: ( a+b+c/ b+c+d) 3 = a3 + b3 +c3 / b3 + c3+ d3 nhé
1. Vì \(\hept{\begin{cases}\left|x+5\right|\ge0\\\left(3y-a\right)^{2018}\ge0\end{cases}\Rightarrow\left|x+5\right|+\left(3y-a\right)^{2018}\ge0}\)
Dấu"=" xảy ra khi \(\hept{\begin{cases}x+5=0\\3y-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=\frac{a}{3}\end{cases}}}\)
\(P=\left(ad-bc+1\right)^{2018}+2019^{(∗)}\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\frac{b+d}{bd}\)
\(\Leftrightarrow2bd=c\left(b+d\right)\)
\(\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\)
\(\Leftrightarrow ad+cd=bc+cd\)
\(\Leftrightarrow ad=bc\)
Vì ad = bc nên ad - bc = 0
Thay vào (*) ta có \(P=\left(0+1\right)^{2018}+2019=1+2019=2020\)