Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Kb với mình nha!!!!Mong bạn kb với mình!!!!
Mình chỉ muốn có nhiều bạn thôi!!!
1 - a/b = 1 - c/d
=> a-b/b = c-d/d
=>a/a-b = c/c-d
Chuc bn hoc tot nha !
a) Ta có: a/b=c/d
=>a/b-1=c/d-1
=>a/b-b/b=c/d-d/d
=>a-b/b=c-d/d
=>ĐPCM
b) Ta có: a/b=c/d
=>a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/c=b/d=a-b/c-d=a+b/c+d
=>a-b/c-d=a+b/c+d
=>a-b/a+b=c-d/c+d
=>ĐPCM
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
a) \(\frac{a-b}{c-d}=\frac{b}{d}\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
b) \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{bk}{bk-b}=\frac{dk}{dk-d}\)
Xét VT \(\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét VP \(\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
anh đi anh nhớ quê nha
nhớ canh rau muống nhớ cà dầm tương
nhớ thằng đẩy bố xuống mương
bố mà bắt được bố tương vỡ mồm