Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên
p2 = m2 + n2
Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2
= - n2 + p2 - m2 = 0
=> a2 = b2 + c2
Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a
\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)
\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)
=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c
Với \(n=0\) thì bài toán trở thành:
\(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(H\right)\)
Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có:\(\frac{1}{a+b-c}+\frac{1}{a-b+c}\ge\frac{4}{a+b-c+a-b+c}=\frac{2}{a}\left(1\right)\)
Chứng minh tương tự,ta có:
\(\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{2}{b}\left(2\right)\)
\(\frac{1}{-a+b+c}+\frac{1}{a+b-c}\ge\frac{2}{c}\left(3\right)\)
Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow H\left(true\right)\)
Với \(n=1\) thì bài toán trở thành:
\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}\ge3\left(U\right)\)
Đặt \(-a+b+c=x;a-b+c=y;a+b-c=z\)
\(\Rightarrow a-b+c+a+b-c=y+z\)
\(\Rightarrow2a=y+z\)
\(\Rightarrow a=\frac{y+z}{2}\)
Tương tự,ta có:\(b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Khi đó,ta có:\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}=\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)
\(=\frac{1}{2}\left[\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\right]\)( Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge2\))
\(\ge\frac{1}{2}\left(2+2+2\right)\)
\(=3\left(4\right)\)
Từ \(\left(4\right)\Rightarrow U\left(true\right)\)
Với \(n=2\) thì ta có:
\(\left(a^{n-2}-b^{n-2}\right)\left(a-b\right)\ge0\)
\(\Rightarrow a^{n-1}+b^{n-1}\ge b^{n-2}a+a^{n-2}b\left(5\right)\)
Tương tự,ta có:
\(b^{n-1}+c^{n-1}\ge b^{n-2}c+c^{n-2}b\left(6\right)\)
\(c^{n-1}+a^{n-1}\ge c^{n-2}a+a^{n-2}c\left(7\right)\)
Áp dụng BĐT AM-GM cho 2 số không âm,ta có:
\(\frac{a^n}{-a+b+c}+\left(-a+b+c\right)\cdot a^{n-2}\ge2\sqrt{\frac{a^n}{-a+b+c}\cdot\left(-a+b+c\right)\cdot a^{n-2}}\)
\(\Rightarrow\frac{a^n}{-a+b+c}-a^{n-1}+a^{n-2}b+a^{n-2}c\ge2\cdot a^{n-1}\)
\(\Rightarrow\frac{a^n}{-a+b+c}+a^{n-2}b+a^{n-2}c\ge3a^{n-1}\left(8\right)\)
Tương tự ta có:
\(\frac{b^n}{a-b+c}+ab^{n-2}+cb^{n-2}\ge3b^{n-1}\left(9\right)\)
\(\frac{c^n}{a+b-c}+ac^{n-2}+bc^{n-2}\ge3c^{n-1}\left(10\right)\)
Cộng vế theo vế của \(\left(5\right);\left(6\right);\left(7\right);\left(8\right);\left(9\right);\left(10\right)\RightarrowĐPCM\)
P/S:Bài dài nên e không biết có đúng ko nữa:3
Sau đây là lời giải siêu xàm của em!
Với n = 0 thì ta cần chứng minh \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (1)
Đặt \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=z\end{cases}}\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
BĐT (1) trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
Thật vậy,áp dụng BĐT quen thuộc \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\),ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{x+z}\)
Cộng theo vế ta được: \(2VT_{\left(1\right)}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)
\(\Rightarrow VT_{\left(1\right)}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
Vậy BĐT (1) đúng. (*)
Giả sử điều đó đúng với n = k (\(k\inℕ^∗\)) tức là ta có: \(\frac{a^k}{b+c-a}+\frac{b^k}{c+a-b}+\frac{c^k}{a+b-c}\ge a^{k-1}+b^{k-1}+c^{k-1}\) (2)
Ta đi chứng minh điều đó đúng với n = k + 1 (\(k\inℕ^∗\)). Tức là c/m:
\(\frac{a^{k+1}}{b+c-a}+\frac{b^{k+1}}{c+a-b}+\frac{c^{k+1}}{a+b-c}\ge a^k+b^k+c^k\) (3)
Thật vậy (3) \(\Leftrightarrow\frac{a^k}{b+c-a}.a+\frac{b^k}{c+a-b}.b+\frac{c^k}{a+b-c}.c\ge a^{k-1}.a+b^{k-1}.b+c^{k-1}.c\)
Và bí!:D
bạn áp dụng bđt AM-GM đi , biến đổi cho ra a^2 vs b^2 vs c^2 rùi nhân vế theo vế là ra ấy mà
có a;b;c là độ dài 3 cạnh 1 tam giác nên theo bđt tam giác ta có:b+c>a \(\Rightarrow\left(b+c\right)^2>a^2\);a+b>c\(\Rightarrow\left(a+b\right)^2>c^2\);
a+c>b\(\Rightarrow\left(a+c\right)^2>b^2\)suy ra \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a^{ }+b\right)^2>a.a^2+b.b^2+c.c^2\)
=\(a^3+b^3+c^3\)