Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá dễ luôn thế mà cũng hỏi hehe....
Áp dụng BĐT Cauchy \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\frac{ca}{b}}=2\sqrt{c^2}=2c\)
Tương tự: \(\frac{ca}{b}+\frac{ab}{c}\ge2a;\frac{ab}{c}+\frac{bc}{a}\ge2b\)
nên \(2\left(\frac{ca}{b}+\frac{ab}{c}+\frac{bc}{a}\right)\ge2\left(a+b+c\right)=2\Rightarrow\)\(A\ge2\) dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
15.
Ta có \(a+b+c+ab+bc+ac=6\)
Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)
=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)
=> \(a+b+c\ge3\)
\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)
Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)
Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)
Tóm lại bđt được chứng minh
Dấu "=": tại a=b=c
Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(1\right)\)
Ta lại có \(abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc+\left(ab+ac+b^2+bc\right)\left(c+a\right)=abc+abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2+abc=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(2\right)\)
Từ (1),(2)\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Từ GT => a=1-b. Thay vòa biểu thức cần chứng minh ta được:
\(a^3+b^3=3b^2-3b+1=3\left(b^2-b+\frac{1}{4}\right)+1-\frac{3}{4}=3\left(b-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Lời giải
Vì $0\leq a\leq b\leq c\leq 1$ nên $ab,bc,ca\geq abc$
Do đó
$A=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}$
Ta cần CM $\frac{a+b+c}{abc+1}\leq 2\Leftrightarrow 2(abc+1)\geq a+b+c$
Thật vậy:
Vì $a,b,c \leq 1$ nên $\left\{\begin{matrix}(a-1)(bc-1)\geq 0\\ (b-1)(c-1)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix}2abc+1\geq abc+1\geq bc+a\\ bc+1\geq b+c\end{matrix}\right.$
Do đó $2abc+2\geq a+bc+1\geq a+b+c$
Hoàn tất chứng minh
Dấu bằng xảy ra khi $(a,b,c)=(0,1,1)$
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tương tự
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cộng lại ta được
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mặt khác
a^2+b^2+c^2>=ab+bc+ca
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dấu = xảy ra khi a=b=c
Chúc bạn học tốt