K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

\(a,\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13=a^2+b^2\)

\(b,a^2+b^2=13\Rightarrow a^2-ab+b^2=7\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=\left(-5\right).7=-35=a^3+b^3\)

\(a,a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

Thay \(a+b=-5;a.b=6\) vào biểu thức ta được :

\(a,=\left(-5\right)^2-2.6\)

\(=25-12\)

\(=13\)

21 tháng 8 2020

a, \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13\)

b, \(a^3+b^3=\left(a+b\right)^3-3a^2b-3b^2a\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-5\right)^3-3.6.\left(-5\right)\)

\(=-125-18.\left(-5\right)=-125+90=-35\)

6 tháng 7 2019

\(a,A=a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab.\)

\(=9^2+2.22=81+44=125\)

\(b,B=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left[\left(a^2+b^2\right)+ab\right]\)

\(=9\left(125+22\right)=9.147=1323\)

24 tháng 7 2016

Từ \(a+b=10=>\left(a+b\right)^2=100=>a^2+2ab+b^2=100=>a^2+2.4+b^2=100.\)

\(\Rightarrow a^2+b^2=92\)

\(\left(a^2+b^2\right).\left(a^3+b^3\right)=a^5+a^2b^3+a^3b^2+b^5=92.880\) 

\(=>a^5+b^5+a^2b^2\left(a+b\right)=80960\) 

\(=>a^5+b^5+\left(ab\right)^2\left(a+b\right)=80960\)

\(=>a^5+b^5+4^2.10=80960\)

\(=>a^5+b^5=80800\)

2 tháng 6 2017

\(A^5-B^5=\left(A-B\right)\cdot\left(A^4+A^3\cdot B+A^2\cdot B^2+A\cdot B^3+B^4\right)\\ A^6-B^6=\left(A-B\right)\cdot\left(A^5+A^4\cdot B+A^3\cdot B^2+A^2\cdot B^3+A\cdot B^4+B^5\right)\\ A^{10}-B^{10}=\left(A-B\right)\cdot\left(A^9+A^8\cdot B+A^7\cdot B^2+A^6\cdot B^3+A^5\cdot B^4+A^4\cdot B^5+A^3\cdot B^6+A^2\cdot B^7+A\cdot B^8+B^9\right)\\ A^n-B^n=\left(A-B\right)\cdot\left(A^{n-1}+A^{n-2}\cdot B+A^{n-3}\cdot B^2+...+A^2\cdot B^{n-3}+A\cdot B^{n-2}+B^{n-1}\right)\)

2 tháng 6 2017

Tuấn Anh Phan Nguyễn Nguyễn Huy Tú Ace Legona Anh Triêt Võ Đông Anh Tuấn soyeon_Tiểubàng giải

Băng đội chuyên toán làm đi ạ!!!

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500

 

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

19 tháng 7 2019

\(a^3-b^3=\left(a-b\right)\left(a^2+b^2+ab\right)=-5\left[\left(a+b\right)^2-ab\right]=-5\left(25-6\right)=-95\)

19 tháng 7 2019

Ta có: a3 - b3 = ( a - b ) ( a2 + ab + b2 ) = ( a - b ) ( a2 + 2ab + b2 - ab )

= ( a - b ) [ (a + b)2 - ab ] = ( a - b ) [(-5)2 - 6 )] = -5 . ( 25 - 6 ) = -5 . 19 = -95