Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ax^2 + bx + c = 0
Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt.
∆ > 0
=> b^2 - 4ac > 0
x1 + x2 = -b/a > 0
=> b và a trái dấu
x1.x2 = c/a > 0
=> c và a cùng dấu
Từ đó ta xét phương trình cx^2 + bx^2 + a = 0
∆ = b^2 - 4ac >0
x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0
x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0
=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4
Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt.
b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si.
x1 + x2 ≥ 2√( x1.x2 )
x3 + x4 ≥ 2√( x3x4 )
=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#)
Tiếp tục côsi cho 2 số không âm ta có
√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##)
Theo a ta có
x1.x2 = c/a
x3.x4 = a/c
=> ( x1.x2 )( x3.x4 ) = 1
=> 2√[√( x1.x2 )( x3.x4 ) ] = 2
Từ (#) và (##) ta có
x1 + x2 + x3 + x4 ≥ 4
\(\Delta=b^2-4ac\ge0\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)
Do vai trò của 2 nghiệm như nhau nên giả sử \(x_1=2x_2\)
Theo vào Viet ta được:
\(\left\{{}\begin{matrix}2x_2+x_2=-\frac{b}{a}\\2x_2^2=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-\frac{b}{3a}\\x_2^2=\frac{c}{2a}\end{matrix}\right.\)
\(\Rightarrow\left(-\frac{b}{3a}\right)^2=\frac{c}{2a}\Rightarrow2b^2=9ac\)
4c = -( a +2b)
\(\Delta=b^2-4ac=b^2+a\left(a+2b\right)=a^2+b^2+2ab=\left(a+b\right)^2\ge0\)
Vì 2b2 - 9ac = 0 => 9ac = 2b2 \(\ge\) 0 => tích ac \(\ge\) 0
mặt khác, 2b2 - 9ac = 0 => b2 - 4,5.ac = 0 => \(\Delta\)= b2 - 4ac = 0,5. ac \(\ge\) 0 do tích ac \(\ge\)0
=> Phương trình đã cho luôn có nghiệm
nhận xét \(\Delta\) = 0,5. ac = b2/ 9 (từ giả thiết)
Khi đó, phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-b+\sqrt{\frac{b^2}{9}}}{2a}=\frac{-b+\frac{\left|b\right|}{3}}{2a}=\frac{-3b+\left|b\right|}{6a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-b-\sqrt{\frac{b^2}{9}}}{2a}=\frac{-b-\frac{\left|b\right|}{3}}{2a}=\frac{-\left(3b+\left|b\right|\right)}{6a}\)
=> \(\frac{x_1}{x_2}=\frac{-\left(3b-\left|b\right|\right)}{-\left(3b+\left|b\right|\right)}=\frac{1}{2}\) khi b > 0 và = 2 khi b < 0
Vậy tỉ số 2 ngiệm bằng 2