K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

bạn làm  hẳn ra cho mình đi bạn nói zậy làm sao mình hiểu được

15 tháng 8 2015

Ta có: 999991999=(999991998).99999(1)

Số có tận cùng là 9 vỡi số mũ chẵn sẽ có tận cùng là 1=>(1)=....1 . 99999 = ...9(tận cùng là 9)

5555571997=(5555571996).555557=(5555572)998.555557=(...9)998.555557=....1 . 555557 = ...7(tận cùng là 7)

Tận cùng là 9 - tận cùng là 7 được tận cùng là 2 k chia hết cho 5

10 tháng 3 2016

Ta có \(\left(...9\right)^2=\left(...1\right)\)

         \(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)

         \(\left(...7\right)^4=\left(...1\right)\)

         \(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)

A có tận cùng là 2 không chia hết cho 5

Vậy không thể chứng minh a chia hết cho 5

29 tháng 1 2017

Ta có:

\(A=999993^{1999}-555557^{1997}\)

\(A=999993^{1998}.999993-555557^{1996}.555557\)

\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)

\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)

\(A=\overline{\left(.....0\right)}\)

Vì A có tận cùng là 0

\(\Rightarrow A⋮5\) (Đpcm)

Hello bạn ^_^"

Có : 

+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 ...33 = ...1499 x ...27 = ...1 x ...7 = ...7

+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7

Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5

Vậy ta có điều phải chứng minh !!!

Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.

VD :

     4645396 = (...34)24 = ...124 = ...1

nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5

Tick nha 

17 tháng 1 2016

Ta có: 9999931999=(...3)499.4+3

                         =[(...3)4]499.(...3)3

                         =(...1)499.(...7)

                         =(...1).(...7)

                         =(...7)

Ta có: 5555571997=(...7)4.499+1

                           =[(...7)4]499.(...7)1

                          =(...1)499.(...7)

                          =(...1).(...7) 

                         =(...7)

Vậy A=(...7)-(...7)=(...0)

Mà các số có CSTC là 0 thì chia hết cho 5

=>A chia hết cho 5(đpcm)

          

23 tháng 7 2015

Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n (n \(\in\) N) có tận cùng là 1.

Do đó \(999993^{1999}=999993^{4.499+3}=999993^{4.499}.999993^3=\left(...1\right).\left(...7\right)=\left(...7\right)\)

Số có tận cùng là 7 khi nâng lên lũy thừa mũ 4n (n \(\in\) N) có tận cùng là 1.

Do đó \(555557^{1997}=555557^{4.499+1}=555557^{4.499}.555557^1=\left(...1\right).\left(...7\right)=\left(...7\right)\)

Vậy  A = 9999931999 - 5555571997 = (...7) - (...7) = (...0) có tận cùng là 0 nên chia hết cho 5.

22 tháng 5 2017

Ta có: 9999931999=9999933.9999931996=9999933.(9999934)499=(.....7).(.....1)499

=> 9999931999 có tận cùng là 7.

Lại có: 5555571997=555557.5555571996=555557.(5555574)499=555557.(....1)499

=> 5555571997 có tận cùng là 7.

=> A có tận cùng là: ....7-.....7=0

=> A chia hết cho 5

30 tháng 5 2017

ta có A=9999931999 - 5555571997

=> A = 9999931996 . 9999933 - 5555571996. 555557

     A = (9999934)449 . (.......7) - (5555574)449 . (.....7)

     A = (......1) . (...7)- (....1) . ( .....7)

     A = (.....7) - (.....7) 

     A = (......0)

vì A có tận cùng bằng 0

=> A chia hết cho 5

vậy A chia hết cho 5

5 tháng 7 2018

Số có tận cùng là 3 khi nâng lên lũy thừa 4n (n\(\inℕ\)) có tận cùng là 1.

Do đó 9999931999=9999934.499+3=9999934.499.9999933=(...1)(...7)=(...7)

Số có tận cùng là 7 khi nâng lên lũy thừa 4n (n\(\inℕ\)) có tận cùng là 1.

Do đó 5555571997=5555574.499+1=5555574.499.5555571=(...1)(...7)=(...7)

Vậy A=9999931999 -5555571997=(...7)-(...7)=(...0)\(⋮5\)