K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 11 2017

Lời giải:

\(A=8n+\underbrace{11....111}_{n}=8n+\frac{\underbrace{99....999}_{n}}{9}=8n+\frac{10^n-1}{9}\)

Quy nạp

Ta thấy:

\(n=1\Rightarrow A_1=9\vdots 9\)

\(n=2\Rightarrow A_2=27\vdots 9\)

......

Giả sử điều trên đúng với \(n=k\), tức là \(A_k=8k+\frac{10^k-1}{9}\vdots 9\), giờ ta cần chứng minh bài toán đúng với \(n=k+1\)

Thật vậy:\(A_{k+1}=8(k+1)+\frac{10^{k+1}-1}{9}=8k+8+\frac{10(10^k-1)+9}{9}\)

\(A_{k+1}=8k+\frac{10^k-1}{9}+(10^k-1)+9\)

Có: \(8k+\frac{10^k-1}{9}=A_{k}\vdots 9\)

\(10^k-1=10^k-1^k=(10-1)(10^{k-1}+...+1)\vdots 9\)

\(9\vdots 9\)

\(\Rightarrow A_{k+1}\vdots 9\)

Vậy kết quả quy nạp đúng. ta có đpcm.

14 tháng 11 2017

a) Ta co:

                  2n + 111....1     ( n CS 1 )

         =  ( 3n - n ) + 111....1 ( n CS 1 )

         =  3n + ( 111....1 - n ) ( n CS 1 )

Tổng các chữ so cua so 111... 1 ( n CS 1 ) la :

          1 + 1 + 1 + .........+ 1 = n  ( n so 1 )

suy ra, Số 111...1 và n có cùng số dư khi chia cho 3 ( n CS 1 )

suy ra : ( 111...1 - n )  ⋮3        ( n CS 1 )

Ma (3n) ⋮ 3 với mọi n ∈N

suy ra: [ 3n + ( 111...1 - n ) ] ⋮ 3     ( n CS 1 )

Vay voi moi số tự nhiên n # 0 thì ta co:

​               2n + 111...1  chia hết cho 3   ( n CS 1 )

 

25 tháng 7 2016

\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)

\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.

Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.

2.

25 tháng 7 2016

Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé

1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé!  http://olm.vn/hoi-dap/question/651590.html

b) Ta có: 10n+8= 1000000000000.......000+8

                               n chữ số 0

=> 10n+8= 10000000000........008

                      n chữ số 8

Ta có tổng các chữ số của 10n+8 bằng:  1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9

Vì 9 chia hết cho 9  => 10n+8 chia hết cho 9

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

$\underbrace{\overline{111...1}}_{n}$ có tổng các chữ số là $n$

$\Rightarrow \overline{111....1}-n\vdots 9$

$\Rightarrow \overline{111....1}-n+9n\vdots 9$

$\Rightarrow \overline{1111...1}+8n\vdots 9$

Hay $A\vdots 9$

14 tháng 9 2024

cho các số 1,3,4,7,8.từ năm chữ số này có thể lập được tát cả bao nhiêu số chẵn có năm chữ số khác nhau sô

17 tháng 10 2016

a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1) 
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1 
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1 
..... 
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3) 
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1) 
= 9.A + n 
=>8n + 11111...1= 9A +9n chia hết cho 9 
b.11111111....1 (gồm 27 số 1) 
= 1111...100.....0 + 11111...10000...0 + 1111...1 
-------------------------- ----------------------- ----------- 
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1 
=111111111 x (10^18 + 10^9 +1) 
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9) 
10^18 chia 3 dư 1 
10^9 chia 3 sư 1 
=> 10^18 + 10^9 +1 chia hết cho 3 
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)

17 tháng 10 2016

A=8n thì n=1 vậy A=81+111111111 vì chúng cộng với nhau sẽ chia được hết cho 9