Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
a/ \(A=5+5^2+5^3+..........+3^{2016}\)
\(\Leftrightarrow A=\left(5+5^4\right)+\left(5^2+5^5\right)+...........+\left(5^{2013}+5^{2016}\right)\)
\(\Leftrightarrow A=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2013}\left(1+5^3\right)\)
\(\Leftrightarrow A=5.126+5^2.126+............+5^{2013}.126\)
\(\Leftrightarrow A=126\left(1+5^2+........+5^{2013}\right)⋮126\left(đpcm\right)\)
b/ \(A=5+5^2+5^3+..........+5^{2016}\)
\(\Leftrightarrow5A=5^2+5^3+...............+5^{2016}+5^{2017}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+........+5^{2017}\right)-\left(5+5^2+.......+5^{2016}\right)\)
\(\Leftrightarrow4A=5^{2017}-5\)
\(\Leftrightarrow4A+5=5^{2017}\)
\(\Leftrightarrow4A+5\) là 1 lũy thừa
c/ Ta có :
\(4A+5=5^{2017}\)
Mà \(4A+5=5^x\)
\(\Leftrightarrow5^{2017}=5^x\)
\(\Leftrightarrow x=2017\)
Vậy ..
Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)
\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương
( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)
Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)
Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)
Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)
Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)
Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)
( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)
\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
3xy+x+3y=4
⇒x(3y+1)+3y+1=5
⇒x(3y+1)+(3y+1)=5
⇒(3y+1)(x+1)=5
⇒x+1; 3y+1 ∈ ƯU(5)={±1;±5}
Mà 3y+1 là ước chia 3 dư 1 ⇒ 3y+1 ∈ {1,-5}
Lập bảng:
3xy+1 | 1 | -5 |
y | 0 | -2 |
x+1 | 5 | -1 |
x | 4 | -2 |
Vậy (x;y)=(-2;-2); (4;0)
a)Có A=5+52+53+...+52016
=>5A=52+53+...+52017
=>4A=5A-A=52017-5
=>4A+5=52017-5+5=52017=5x
=>x=2017
b) Gọi 4 số tự nhiên liên tiếp là : k;k+1;k+2;k+3
Có k(k+1)(k+2)(k+3)+1
=k(k+3)(k+1)(k+2)+1
=(k2+3k)(k2+3k+2)+1
Đặt k2+3k=A
=A(A+2)+1
=A2+2A+1
=(A+1)2
=>ĐPCM
Tìm GTNN của biểu thức sau: A=4x^2-4xy+5y^2+20x-6y+2044