Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=5^{2008}+5^{2007}+5^{2006}\)
\(\Rightarrow B=5^{2016}\left(5^2+5+1\right)\)
\(\Rightarrow B=5^{2016}.31\)
=> B chia hết cho 31
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
a)A=2+2^2+2^3+...+2^60 chia hết cho 15
=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)
=>2.15+...+2^57.15
Vì 15 chia hết choo 15
=>a chia hết cho 15
b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31
=>(1+5+5^2)+...+5^56.(1+5+5^2)
=>31+....+5^56.3vi2 31 chia hết cho 31
=>B chia hết cho 31
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng
Ta có
A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)
=> A=31+5^3(1+5+5^2)+...+5^96(1+5+5^2)
=> A=31+5^3.31+...+5^96.31
=> A=31(1+5^3+..+5^96) CHIA HẾT CHO 31 (tick né)
Ta có A=5+5^2+5^3+...+5^2007
=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2005+5^2006+5^2007)
=31x5+31x5^4+...+31x5^2005
=31x(5+5^4+...+5^2005) chia hết cho 31
Vậy A chia hết cho 31
A = 5 + 52 + 53 + .....+ 52007
= ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) +.........+ (52005 + 52006 + 52007 )
= 5( 1 + 5 + 52 ) + 54( 1 + 5 + 52 ) +.........+ 52005( 1 + 5 + 52 )
= 31( 5 + 54 + .....+ 52005 )\(⋮\)31
Vậy A \(⋮\)31