Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^{x+2}-2^x=96\)
\(=>2^x.2^2-2^x=96\)
\(=>2^x.\left(4-1\right)=96\)
\(=>2^x.3=96\)
\(=>2^x=96:3=32\)
\(=>2^x=2^5\)
\(=>x=5\)
\(b,720:\left[41.\left(2x-5\right)\right]=2^3.125:5^2\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.125:25\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.5=40\)
\(=>41.\left(2x-5\right)=720:40=18\)
\(=>2x-5=18:41=\frac{18}{41}\)
\(=>2x=\frac{18}{41}+5=\frac{223}{41}\)
\(=>x=\frac{223}{41}:2=\frac{223}{62}\)
\(c,\left(-2x+7\right)^{19}=\left(-2x+7\right)^{19}.\left(x+1\frac{1}{4}\right)^2\)
\(=>\left(-2x+7\right)^{19}:\left(-2x+7\right)^{19}=\left(x+\frac{5}{4}\right)^2\)
\(=>1=\left(x+\frac{5}{4}\right)^2\)
\(=>1^2=\left(x+\frac{5}{4}\right)^2\)
\(=>1=x+\frac{5}{4}\)
\(=>x=1-\frac{5}{4}=-\frac{1}{4}\)
Chúc bạn Hk tốt!!!!
Và giữ đúng lời hứa trên@@!!!!!
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
\(\frac{A}{B}=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(\frac{A}{B}=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^9.\left(2.3\right)^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(\frac{A}{B}=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(\frac{A}{B}=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(\frac{A}{B}=\frac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(5.3-7.2\right)}\)
\(\frac{A}{B}=\frac{2^{29}.3^{18}.\left(10-9\right)}{2^{28}.3^{18}.\left(15-14\right)}=2\)
Bài 1:
a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)
\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)
\(=-\frac{3}{7}\)
b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)
\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)
\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)
\(=\frac{1}{2}-\frac{4}{5}\)
\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)
d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)
\(=5^2+2^5-\frac{15^2}{15^2}\)
\(=25+32-1\)
\(=56\)
e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)
\(=\frac{4}{17}+\frac{13}{17}\)
\(=\frac{17}{17}=1\)
g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)
\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)
\(=\frac{7}{12}\cdot4=\frac{7}{3}\)
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)