K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(A=4+4^2+4^3+......+4^{2009}+4^{2010}\)

\(A=4\left(1+4+4^2+......+4^{2008}+4^{2009}\right)\)

vì \(4⋮4\Rightarrow4\left(1+4+4^2+.....+4^{2008}+4^{2009}\right)⋮4\)

\(\Rightarrow A⋮4\)

29 tháng 12 2017

A = 4+ 42+43+....+42009+42010

A = 4.(1+4+42+....+42008+42009)

Vì 4 chia hết cho 4 =>  4.(1+4+42+....+42008+42009) chia hết cho 4 => A chia hết cho 4

Vậy A chia hết cho 4 

9 tháng 8 2017

a) 

S = 4 + 42 + 43 + ... + 499 + 4100

S = ( 4 + 42 ) + ( 4+ 44 ) + ... + ( 499 + 4100 )

S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)

S = 4.5 + 43.5 + .. + 499.5

S = ( 4 + 43 + .. +499).5 => S \(⋮\)5

b) S = 2 + 22 + 23 + ... + 22009  + 22010

=> S \(⋮\)2

S = = 2 + 22 + 23 + ... + 22009 + 22010

S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )

S = 2.3 + 23.3 +... +22009.3

S = ( 2 + ... +22009 ) x 3

=> s\(⋮\) 3

=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6

11 tháng 12 2015

\(A=3+3^2+3^3+...+3^{2009}+3^{2010}=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

\(A=3.13+3^4.13+...+3^{2008}.13\)

\(A=13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13

\(B=\left(4+4^3\right)+\left(4^2+4^4\right)+\left(4^5+4^7\right)+\left(4^6+4^8\right)+...+\left(4^{15}+4^{17}\right)\)

\(B=4.17+4^2.17+4^5.17+...+4^{15}.17\)chia hết cho 17=>số dư = 0

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

14 tháng 11 2018

ta có : A=2+2^2+2^3+...+2^2010 chia  ra thành các nhóm , mỗi nhóm có 2 số hạng

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

A= 2(1+2)+2^3(1+2)+...+2^1009(1+2)

A=2.3+2^3.3+...+2^2009.3

A=3(2+2^3+...+2^2009) chia hết cho 3

phần b tương tự

đây lak toán lớp 6=>ông hok lớp 6 , lừa tui dễ lắm hả???

#G2k6#

14 tháng 11 2018

\(A=2+2^2+2^3+....+2^{2009}+2^{2010}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}.\left(1+2\right)\)

\(A=2.3+2^3.3.....+2^{2009}.3\)

\(A=3\left(2+2^3+....+2^{2009}\right)⋮3\)

4 tháng 4 2015

A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)

A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}

A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]

Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5. 

5 tháng 4 2015

A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]

   = 1 + 1 + 1 + ... + 1 (1005 số 1)

   = 1005 chia hết cho 5

5 tháng 12 2016

nỏ thích trả lời

:D :D :D

20 tháng 11 2015

(3+ 32 +33 ) + (3+ 35 +36 ) + ... + (32008 + 32009 + 32010 )

= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )

= 13 ( 3 + 34 + ... + 32008 )    chia hết cho 13