Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phan h B = (4^32 - 1)(4^32 + 1) = ( 4^16 + 1)(4^32+1)(4^16 - 1)
..... => ket qua
A = 12 – 22 + 32 – 42 + … – 20042 + 20052
A = 1 + (32 – 22) + (52 – 42)+ …+ ( 20052 – 20042)
A = 1 + (3 + 2)(3 – 2) + (5 + 4 )(5 – 4) + … + (2005 + 2004)(2005 – 2004)
A = 1 + 2 + 3 + 4 + 5 + … + 2004 + 2005
A = ( 1 + 2002 ). 2005 : 2 = 2011015
b/ B = (2 + 1)(22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = (22 - 1) (22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = ( 24 – 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = …
B =(232 - 1)(232 + 1) – 264
B = 264 – 1 – 264
B = - 1
xin lỗi nha chỗ câu a mình lộn
chỗ (1+2002)x2005:2=2011015 là sai nha
(1+2005)x2005:2= 2011015 là đúng nha
Bài 2:
a: \(\left(a-b-2\right)^2-\left(2a-2b\right)\left(a-b-2\right)+a^2-2ab+b^2\)
\(=\left(a-b\right)^2-4\left(a-b\right)+4+\left(a-b\right)^2-2\left(a-b\right)\left(a-b-2\right)\)
\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left[\left(a-b\right)^2-2\left(a-b\right)\right]\)
\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left(a-b\right)^2+4\left(a-b\right)\)
\(=4\)
b: \(\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)
\(=\left(2^{128}-1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)
\(=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)
\(=2^{512}-1+1=2^{512}\)
c: \(24\left(5^2+1\right)\left(5^4+1\right)\cdot...\cdot\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}\)
=-1
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{64}-1\right)-2^{64}\)
\(=-1\)
\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\)
\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\)
\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)
d) \(D=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)\)
\(=\left(9x^2+24x+16\right)-10x-\left(x^2-16\right)\)
\(=9x^2+24x+16-10x-x^2+16\)
\(=8x^2+14x+32\)
e) \(E=\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)
\(=\left[\left(a+1\right)\left(a+1\right)\right]\left[\left(a+2\right)\left(a-2\right)\right]\left(a^2+4\right)\left(a^2+1\right)\)
\(=\left(a^2-1\right)\left(a^2-4\right)\left(a^2+4\right)\left(a^2+1\right)\)
\(=\left[\left(a^2-1\right)\left(a^2+1\right)\right]\left[\left(a^2-4\right)\left(a^2+4\right)\right]\)
\(=\left(a^4-1\right)\left(a^4-16\right)\)
\(=a^8-16a^4-a^4+16\)
f) \(F=\left(3a+1\right)^2+\left(2-3a\right)\left(2+3a\right)\)
\(=9a^2+6a+1+4-9a^2\)
\(=6a+5\)
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=2^{64}-1\)
\(\Rightarrow B=2^{64}-1-2^{64}=-1\)
Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)
Thay 264 - 1 vào B, ta được :
\(2^{64}-1-2^{64}=-1\)
A=4(32+1)(34+1)(38+1)...(364+1)
=>2A=8(32+1)(34+1)(38+1)....(364+1)
=(32-1)(32+1)(34+1)(38+1).....(364+1)
=(34-1)(34+1)(38+1)....(364+1)
=(38-1)(38+1).....(364+1)
tương tự như thế ta được
2A=3128-1
=>A\(\frac{3^{128}-1}{2}\)
=>B>A
Ta có: \(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=4^{64}-1\)
mà \(B=4^{64}-1\)
Vậy \(B=3A\)