Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A=2^2+2^4+...+2^2010
=> 2^2 A= 2^4+2^6+..+2^2012
=> 2^2 A - A=( 2^4+2^6+..+2^2012 ) -(2^2+2^4+...+2^2010 )
=> 3A= 2^2012 -2^2
=> A= (2^2012-2^2)/3
B=3-3^2+3^3-...-3^2010
=>3B= 3^2 -3^3+3^4-...-3^2011
=> 3B + B = (3^2 -3^3+3^4-...-3^2011) +(3-3^2+3^3-...-3^2010)
=> 4B =3-3^2011
=> B= (3-3^2011)/4
2.
A=3+3^2+..+3^100
=> 3A =3^2+3^3+...+3^101
=> 3A- A = (3^2+3^3+...+3^101)-(3+3^2+..+3^100)
=> 2A=3^101 -3
=> 2A+3 =3^101 mà 2A+3 =3^n
=> n=101
a)A=3+3^2+3^3+....+3^1000
3A=3^2+3^3+3^4+....+3^1000
2A=3^1000-3
A=(3^1000-3):2
b)2.(3^1000-3):2+3=3^n
3^1000=3^n
Vậy n=1000
Chúc em học tốt^^
a) 3A = 32 + 33 + ... + 31001
2A = 3A - A = ( 32 + 33 + ... + 31001 ) - ( 3 + 32 + 33 +...+ 31000 ) = 31001 - 3
A = \(\frac{3\left(3^{1000}-1\right)}{2}\)
b) 2A + 3 = 31001 - 3 + 3
= 31001 = 3n
n = 1001
Ta có 2A=3^2+3^3+3^4+...+3^100+3^101
2A -A = 3^2+3^3+.......+3^100+3^101
-
3+3^2+3^3+........+3^100
2A-A=3^101-3
2A+3=3^n
Thay 2A là 3^101-3
Ta có:3^101-3+3=3^n
3^101- (3-3)=3^n
3^101= 3^n
Vậy n=101
3A=\(3^2+3^3+3^4+...+3^{2007}\)
3A-A=2A=\(3^{2007}-3\)
A=\(\frac{3^{2007}-3}{2}\)
b.
2A+3=3^x
3^2007-3+3=3^x
3^2007=3^x
vay x=2007
ta có : 3A=32+33+...+32007
3A-A=32+33+34+....+32007-3-32-33-...-32006
2A=32007-3
A=\(\frac{3^{2007}-3}{2}\)
b,
2A+3=3x
<=>32007-3+3=3x
<=> 32007=32007
<=> x = 2007
vậy x =2007
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
1.
a) A = 3^1 + 3^2 +........+3^2006
3A = 3^2 + ............+3^2006 + 3^2007
3A - A = (3^2 +........+3^2006 +3^2007)-(3^1 + 3^2+.....+3^2006)
2A = 3^2007 - 3^1
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25
a) \(A=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow A=\frac{3^{2017}-3}{2}\)
b) \(2A+3=3^n\)
\(\Rightarrow2.\frac{3^{2017}-3}{2}+3=3^n\)
\(\Rightarrow3^{2017}-3+3=3^n\)
\(\Rightarrow3^{2017}=3^n\)
\(\Rightarrow n=2017\)
=3^1+3^2+3^3+....+3^2016
=[2016-1]:1+1.[2016+1]:2
=1008.2017=2033136
=3^2033136