Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
xem lại đề đi mk nghĩ là 121 đấy
cả cái tổng đó phải chia hết cho 121
a) C= 2+22 + 23+...+2100
2C= 22 +23+24+...+2101
2C -C= 2101- 2
C = 2101 -2
Vậy...
b) C= 2.(1 + 2+ 4+ 8)+ 25.(1+2+4+8)+..+297.(1+2+4+8)
C= 2. 15 + 25 . 15 +...+ 297 . 15
C= (2+25+...+297).15
Vậy C chia hết cho 15(đpcm)
Chữ số tận cùng của C là 0 vì nếu chữ số tận cùng của (2+ 25+..+297) có chữ số tận cùng là 0,2,4,6,8 thì sau khi nhân với 15 vẫn có chữ số tận cùng là 0
A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)
= 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)
= 120+3^4.110+....+3^96.120
= 120.(1+3^4+.....+3^96) chia hết cho 120
=> ĐPCM
Tk mk nha
ta co A=(31+32+33+34)+...+(397+398+399+3100)
tớ gợi ý nhiêu đây thôi
2A-A=(23+23+24+25+....+22014+22015)-(22+22+23+24+......+22014)
A=22015=210.22005= 1024.22005 chia hết cho 1024 (đpcm)
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
A = 3 + 32 + 33 + 34 + .... + 399 + 3100
= (3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ..... + (397 + 398 + 399 + 3100)
= 3(1 + 3 + 32 + 33) + 35(1 + 3 + 32 + 33) + .... + 397(1 + 3 + 32 + 33)
= 40(3 + 35 + .... + 397) \(⋮5\)
Ta thấy A \(⋮3\)(vì các số hạng của A đều chia hết cho 3)
mà (3; 5) = 1
nên A \(⋮15\)
Ta có : A =3+3^2+3^3+3^4+.............+3^99+3^100
= (3+3^2+3^3+3^4)+................+(3^97+3^98+3^99+3^100)
= 3.(1+2+3+3^2)+ ...............+3^97.(1+2+3+3^2)
=3.15+.........................+3^97.15
=15.(3+...............+3^97) chia hết cho 15
\(A=3+3^2+3^3+......+3^{99}+3^{100}\)
\(A=\left(3+3^2+3^3+3^4\right)+......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(A=120+..........+3^{96}.\left(3+3^2+3^3+3^4\right)\)
Mà 120 \(⋮\)120
=> A \(⋮\)120 ( đpcm )
\(A=3+3^2+...+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(\Rightarrow A=120+...+3^{96}.120\)
\(\Rightarrow A=120.\left(1+...+3^{96}\right)⋮120\left(đpcm\right)\)