Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=\left(3^2+3^3+3^4+..+3^{2010}\right)-\left(3+3^2+3^3+....+3^{2009}\right)\)
\(2A=3^{2010}-3\)(1)
(1) => \(3^{2010}-3+3=3^{2010}\)
=> n = 2010
A = 3 + 32 + 33 + ... + 32009
3A = 32 + 33 + 34 + ... + 32010
3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)
2A = 32010 - 3
3n = 2A + 3
3n = 22010 - 3 + 3
3n = 32010
n = 2010
A = 31+32 + 33+...32015
\(\Rightarrow\)3A= 32 + 33+...+32016
\(\Rightarrow\)2A = 3A -A = 32016 -3
\(\Rightarrow\)2A +3 = 32016
vậy n = 2016
Ta có :
A= 31+32+33+34+....+32015
=>3A= 32+33+34+35+....+32016
=>3A- A=(32+33+34+35+....+32016) - (31+32+33+34+....+32015)
=>2A=32016-3
=>2A +3 =32016
Vậy n = 2016
\(A=3+3^2+...+3^{2008}\)
\(3A=3.\left(3+3^2+...+3^{2008}\right)\)
\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3^{2009}-3+3\)
\(2A+3=3^{2009}\)
Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Ta có :
A=3+32+...+32015
=> 3A-A=32+33+...+32016- (3+32+...+32015)
=>2A=32016-3
lại có: 2A+3=3n
=>32016-3+3=3n
=>32016=3n
=>n=2016
Vậy n=2016
\(A=3+3^2+3^3+3^4+....+3^{2015}\)
\(=>3A=3^2+3^3+3^4+3^5+....+3^{2016}\)
\(3A-A=3^2+3^3+3^4+....+3^{2016}-3-3^2-3^3-....-3^{2015}\)
\(2A=3^{2016}-3\)
Mà \(2A+3=3^n\)
=> \(3^{2016}-3+3=3^n\)
\(=>3^{2016}=3^n\)
=> n = 2016 ( thỏa mãn yêu cầu đề bài )
Ta có: A = 3 + 32 + 33 + ... + 32015
\(\Rightarrow\) 3A = 32 + 33 + 34 + ... + 32016
\(\Rightarrow\) 3A \(-A\) = (32 + 33 + 34 + ... + 32016) \(-\) (3 + 32 + 33 + ... + 32015)
\(\Rightarrow\) 2A = 32016 \(-\) 3
Mà 2A + 3 = 3n
\(\Rightarrow\) 32016 \(-\) 3 + 3 = 3n
\(\Rightarrow\) 3n = 32016
=> n = 2016.
a) \(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\mid:2x-3=\frac{1}{4}\Rightarrow2x=\frac{13}{4}\Rightarrow x=\frac{13}{8}\left(TM\right)\\x< \frac{3}{2}\mid:3-2x=\frac{1}{4}\Rightarrow2x=\frac{11}{4}\Rightarrow x=\frac{11}{8}\left(TM\right)\end{cases}.}\)
b) \(\Leftrightarrow\left|x-1\right|=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}x\ge1\mid:x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\left(TM\right)\\x< 1\mid:1-x=\frac{3}{4}=>x=\frac{1}{4}\left(TM\right)\end{cases}}\)
c) \(\frac{3}{5\left(x-\frac{5}{6}\right)}-\frac{1}{2\left(\frac{3}{2}-1\right)}=-\frac{1}{4}\Leftrightarrow\frac{3}{\frac{5\left(6x-5\right)}{6}}-\frac{1}{2\cdot\frac{1}{2}}=-\frac{1}{4}\Leftrightarrow\frac{18}{5\left(6x-5\right)}=-\frac{1}{4}+1\)
\(\Leftrightarrow\frac{18}{5\left(6x-5\right)}=\frac{3}{4}\Leftrightarrow6x-5=\frac{24}{5}\Leftrightarrow6x=\frac{49}{5}\Leftrightarrow x=\frac{49}{30}\)
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\Leftrightarrow2\cdot\frac{x+1-2}{2\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow\frac{x-1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow2016x-2016=2015x+2015\Leftrightarrow x=2015+2016=4031\)
Vậy x = 4031.
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Leftrightarrow\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> a = 2.30 = 60
b =30. 3/2 = 45
c = 30 . 4/3 =40
cách này ngắn hơn nè!
1+2+3+.........+n=aaa
=>n(n-1)/2=aaa.111
=>n(n-1)=aaa.222=a.3.2.37
=>n(n+1)=aaa.6.37
vì n(n+1) là 2 số tự nhiên liên tiếp=>a.6 và 37 là hai số tự nhiên liên tiếp,a.6 chia hết cho 6
=>a.6=36<=>a=6=>n=36
vậy .....
1+2+3+4+...+n=aaa
n(n+1)/2=a.111=>n(n+1)=222.a
do n(n+1) là tích 2 số tự nhiên liên tiếp=>a.222 có chữ số tận cùng là 0,2,6<=>a có chữ số tận cùng bằng 1,5,6,3,8
xét các trường hợp
th1, a=1=>n(n+1)=222(loại)
th2, a=5=>n(n+1)=1110(loại)
th3,a=3=>n(n+1)=666(loại)
th4,a=8=>n(n+1)=1776(loại)
th5,a=6=>n9n+1)=1332=>n=36
vậy n=36,a=6
Bạn ơi, A + 3 + ... hay là A = 3 + 32+... hả bạn?