K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

a^2 = b^2 + c^2 (1) 
=> a^2 = (b+c)^2 - 2bc 
=> a^2 <= (b+c)^2 
=> a <= b+c (2) 

Nhân (1) với (2), vế theo vế ta có: 
a^3 = b^3 + c^3 + bc(b+c) 
=> a^3 >= b^3 + c^3 
 

6 tháng 3 2020

- Ta có : \(a^3+b^3+c^3=3abc\)

=> \(a^3+b^3+c^3-3abc=0\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

=> \(\frac{\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(c^2-2ac+a^2\right)}{2}=0\)

=> \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

=> \(a-b=b-c=c-a=0\)

=> \(a=b=c\)

- Thay a = b = c vào biểu thức N ta được :

\(N=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy giá trị của N = \(\frac{1}{3}\) khi \(a^3+b^3+c^3=3abc\)\(a+b+c\ne0\)

21 tháng 9 2016

Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)

1 + bc2 \(\ge2c\sqrt{b}\)

1 + ca2 \(\ge2a\sqrt{c}\)

VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)

\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)

\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)

\(\ge\frac{18}{a^3+b^3+c^3}\)