Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
\(A=3a-3ab-b\)
Ta có : a = -a => a - (-a) = 0 => a + a = 0 => 2a = 0 => a = 0
2b + 1 = -3 => 2b = -4 => b = -2
Thay a = 0 và b = -2 vào ta có : \(A=3\cdot0-3\cdot0\cdot\left(-2\right)-\left(-2\right)=0-0+2=2\)
\(B=4a-5b\)
Ta có : |a| = 1 => \(a=\pm1\)
+) Với a = 1 và b = -2 thì \(B=4\cdot1-5\cdot\left(-2\right)=4-\left(-10\right)=14\)
+) Với a = -1 và b = -2 thì \(B=4\cdot\left(-2\right)-5\cdot\left(-2\right)=-8-\left(-10\right)=-8+10=2\)
Câu c nên sửa đề lại đi
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a-c}{3b-d}=\dfrac{3bk-dk}{3b-d}=k\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=k\)
Do đó: \(\dfrac{3a-c}{3b-d}=\dfrac{2a+3c}{2b+3d}\)
c: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2ab+b^2}{2cd+d^2}=\dfrac{2\cdot bk\cdot b+b^2}{2\cdot dk\cdot d+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{2ab+b^2}{2cd+d^2}\)
#)Giải :
c) ( a + b )3 = (a+b)(a+b)(a+b)
= a(a+b)(a+b) +b(a+b)(a+b)
= (a2+ab)(a+b)+(ab+b2)(a+b)
= (a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b2)
= a3+a2b+a2b+ab2+a2b+ab2+ab2+b2
= a3+a2b+a2b+a2b+ab2+ab2+ab2+b2
= a3+3a2b+3ab2+b2
Vậy : (a+b)3= a3+ 3a2b + 3ab2 + b2 ( dpcm )
#~Will~be~Pens~#
a) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\)
\(=a\left(a+b\right)+b\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
Vậy \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(A-B+C=2a^2-3ab+4b^2-3a^2-4ab+b^2+a^2+2ab+b^2\)
\(\Rightarrow A-B+C=-5ab+6b^2\)
A−B+C=−5ab+6b2