K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
UN
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PC
2
25 tháng 7 2018
\(A=2^9+9^{99}\)
\(A=\left(2^4\right)^2.2+\left(9^2\right)^{49}.9\)
\(A=\left(...6\right)^2.2+\left(...1\right)^{49}.9\)
\(A=\left(....2\right)+\left(...9\right)̸\)
\(A=\left(...1\right)\)không chia hết cho 10
HN
0
LP
1
24 tháng 7 2015
vao Chứng minh rằng 2^9+2^99 chia hết cho 100 toán dành cho ...
DT
0
TV
1
LC
1
3 tháng 8 2022
b: \(2^{70}+3^{70}=4^{35}+9^{35}=\left(4+9\right)\cdot A⋮13\)
Một số có hai chữ số tận cùng bằng 25 \(⋮\) 25. Một số \(⋮\) 4 và 25 thì \(⋮\) 100( 4 và 25 nguyên tố cùng nhau)
Mặt khác: \(\left(2^{10}\right)+1⋮25\)và \(2^9+2^{99}⋮4\)
Ta có:
\(2^9-2^{99}=\left(2^9+2^{19}\right)-\left(2^{19}+2^{29}\right)+\left(2^{29}+2^{39}\right)-...+...-\left(2^{79}+2^{89}\right)+\left(2^{89}+2^{99}\right)\)
\(=\left(1+2^{10}\right)\cdot\left(2^9-2^{19}+2^{29}-2^{39}+....+2^{99}\right)\)
\(\Rightarrow2^9+2^{99}⋮25\)
\(\Rightarrow2^9+2^{99}⋮100\)
Bài làm
Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.