Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
=> A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )
=> A = 2.( 1 + 2 + 2.2 + 23 ) + 25.( 1 + 2 + 2.2 + 23 ) + .... + 257 .( 1 + 2 + 2.2 + 23 )
=> A = 2.15 + 25.15 + .... + 257.15
=> A = 15.( 2 + 25 + .... + 257 )
Vì 15 ⋮ 3 và 15 nên A ⋮ 3 và 15 ( đpcm )
=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 258.( 1 + 2 + 2.2 )
=> A = 2.7 + 24.7 + ... + 258.7
=> A = 7.( 2 + 24 + ... + 258 )
Vì 7 ⋮ 7 nên A ⋮ 7 ( đpcm )
Phương Thảo copy lại của Ngọc Thạch ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
* Chứng minh chia hết cho 3:
\(2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\Rightarrow⋮3\)
* Chứng minh chia hết cho 7 thì bạn gộp 3 số đầu tương tự như mẫu trên
* Chứng minh chia hết cho 15 thì bạn gộp 4 số đầu tương tự như mẫu trên
tk ủng hộ nhé
\(\)
muốn chia hết cho thì bạn cứ gộp 2 số đầu vào nhau
muốn chia hết cho 7 thì bạn cứ gộp 3 số đầu vào nhau
muốn chia hết cho 15 thì bạn gộp 4 số đầu vào nhau
A = 2 + 22 + ...... + 260
= 2(1+2) +.......+ 260 (1 +2)
= 3( 2 + ....+ 260) nên A chia hết cho 3
A = _________________(Đề)
= 2( 1 +2 + 22) +...+ 258(1 +2 + 22)
= 7(2 + ...258) nên A chia hết cho 7
Bạn làm tương tự các câu khác nha
A = 2 + 22 + 23 + .... + 260
= (2 + 22) + (23 + 24) + .... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + .... + 259.(1 + 2)
= 2.3 + 23.3 + .... + 259.3
= 3.(2 + 23 + ..... +259) chia hết cho 3
TA CÓ: A=(2+22)+(23+24)+(25+26)+27+...+260
= 2(1+2)+23(1+2)+25(1+2)+27(1+2)+...+259(1+2)
= 2.3+23.3+25.3+27.3+...+259.3
= 3(2+23+25+27+...+259) chia hết cho3
vậy A chia hét cho 3
ta có A=(2+22+23)+(24+25+26)+27+...+260
= 2(1+2+4) +24(1+2+4)+27(1+2+4)+...+258(1+2+4)
= 2.7+24.7+27.7+...+258.7
= 7(2+24+27+...+258) chia hết cho 7
vậy A chia hết cho 7
ta có A=(2+22+23+24)+(25+26+27+28)+...+260
= 2(1+2+4+8)+25(1+2+4+8)+...+257(1+2+4+8)
= 2.15+25.15+...+257.15
= 15(2+25+...+257) chia hết cho 15
vậy A chia hết ch 15
ta có thể kết luận rằng A chia hết ch 3;7 và 15
a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )
=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )
=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)
=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )
b) B=2+2^2+.......+2^60
=( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)
= 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)
= 2x3+2^3x3+............+2^59x3
= 3x ( 2 + 2^3 + ...........+ 2^59 )
=>B chia hết cho 3
Can you do next post ?
A = 2 + 2² + 2³ + 2⁴ + ... + 2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰
* Chứng minh A chia hết cho 3:
Ta có:
A = 2(1 + 2) + 2³(1 + 2) + ... + 2⁵⁷(1 + 2) + 2⁵⁹(1 + 2)
= 3(2 + 2³ + ... + 2⁵⁷ + 2⁵⁹)
⇒ A là bội của 3
⇒ A chia hết cho 3
* Chứng minh A chia hết cho 7:
Ta có:
A = 2(1 + 2 + 2²) + 2⁴(1 + 2 + 2²) + ... + 2⁵⁵(1 + 2 + 2²) + 2⁵⁸(1 + 2 + 2²)
= 7(2 + 2⁴ + ... + 2⁵⁵ + 2⁵⁸)
⇒ A là bội của 7
⇒ A chia hết cho 7
* Chứng minh A chia hết cho 15:
Ta có 15 = 3 . 5, do A đã chia hết cho 3 nên chỉ cần chứng minh A chia hết cho 5:
A= 2 + 2³ + 2² + 2⁴ + ... + 2⁵⁷ + 2⁵⁹ + 2⁵⁸ + 2⁶⁰
= 2(1 + 2²) + 2²(1 + 2²) + ... + 2⁵⁷(1 + 2²) + 2⁵⁸(1 + 2²)
= 5(2 + 2² + ... + 2⁵⁷ + 2⁵⁸)
⇒ A là bội của 5
⇒ A chia hết cho 5
⇒ A vừa chia hết cho 3 vừa chia hết cho 5 nên A chia hết cho 15
Tick nhé
A = 2 + 22 + 23 + 24 + ... + 258 + 259 + 260
A = (2 + 22 + 23 + 24) + ... + (257 + 258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 + 257.2 + 257.2.2 + 257.2.2.2)
A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)
A = 2.15 + ... + 257.15
A = 15.(2 + 25 + ... + 257) chia hết cho 15
=> A chia hết cho 15
A = 2 + 22 + 23 + ... + 258 + 259 + 260
A = (2 + 22 + 23) + ... + (258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2) + ... + (258.1 + 258.2 + 258.2.2)
A = 2.(1 + 2 + 4) + ... + 258.(1 + 2 + 4)
A = 2.7 + ... + 258.7
A = 7.(2 + 24 + ... + 258) chia hết cho 7
=> A chia hết cho 7
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 . ( 1+2 ) + 23 . (1+2) + ... + 259 . (1+2)
A = 2.3 + 23.3 + ... + 259.3
A = (2+23+...+259) . 3
vì 3 chia hết cho 3 suy ra A chia hết cho 3