K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

k em đi

29 tháng 9 2016

tách ra dễ mà

29 tháng 9 2016

Muốn chứng minh A thì chúng ta phải tìm A trước : 

A = 2.A - A

Tính 2.A = 2 . ( 1 + 32 + 3+ 3+...+311)

        2.A = 2 . ( 1 + 33 + 34 + 35+ ... + 311 + 312 ) 

Tìm A : A= 2A -A 

              = ( 1 + 33 + 34 + 35+ ... + 311 + 312 ) -  ( 1 + 32 + 3+ 3+...+311)  

             = 32 + 312

                = 314 = 4782969

4782969 chia hết cho 13 nhưng chia không hết cho 40

29 tháng 9 2016

cảm ơn

17 tháng 10 2017

Đề 1:

\(A=2+2^2+2^3+.....+2^{50}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{49}+2^{50}\right)\)

\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{49}.\left(1+2\right)\)

\(A=2.3+2^3.3+.....+2^{49}.3\)

\(A=3.\left(2+2^3+.....+2^{49}\right)\)

\(\Leftrightarrow A⋮3\)

Vậy \(A⋮3\)

Đề 2:

Vì p là số nguyên tố lớn hơn 3

\(\Rightarrow\)p lẻ

\(\Rightarrow\)\(p^2lẻ\)

\(\Rightarrow p^2+2003\)là một số chẵn

mà p > 3 

\(\Rightarrow\)\(p^2>3\)

\(\Rightarrow p^2+2003>3\)

\(\Rightarrow p^2+2003\)là hợp số.

Nhớ k cho mình nhé! Thank you!!!

17 tháng 10 2017

cảm ơn bạn nhé Hà!

26 tháng 8 2015

A= 12^2004 - 2^1000= (12^4)^501 - (2^4)^250= (...6)^501 - (...6)^250= ...6  - ...6 = ...0 chia het cho 10 (ĐPCM)

 

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^

7 tháng 11 2015

A=(2+22) +(23+24)+......+(259+260) = 2(1+2) +23(1+2) + ......+ 259(1+2) = 3(2+23+ 25+......+ 259) chia hết cho 3

A=(2+22+23)+(24+25+26) + ...........+(258+259+260)= 2 (1+2+22) +24 (1+2+22) +.................+ 258 (1+2+22)

                                                                        = 3.7             + 24.7             +................+ 258.7  chia hết cho 7

A= (2+23) + ( 22+ 24) +(25+27) +(26+28) +...................+ (258+260)

   =2(1+22) +22 (1+22) +25 (1+22)+26(1+22) + ..................+ 258 (1+22)  =  2. 5  + 22 .5  +.............+258.5  chia hết cho 5

mà A chía hết cho 3 => A chia hết cho 3.5 =15

7 tháng 11 2015

\(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)

\(\Rightarrow2A=2.\left(2+2^2+2^3+2^4+2^5+...+2^{60}\right)\)

\(2A=2^2+2^3+2^4+2^5+2^6+...+2^{61}\)

Vậy \(2A-A=\left(2^2+2^3+2^4+2^5+2^6...+2^{61}\right)-\left(2+2^2+2^3+2^4+2^5+...+2^{60}\right)\)

\(A=2^{61}-2\)

14 tháng 10 2017

A=(2+22)+(23+24)+...+(289+290)

A=(2x1+2x2)+(23x1+23x2)+...+(289+290)

A=2x(1+2)+23x(1+2)+...+289x(1+2)

A=3x(2+23+...+289) chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

A=(2x1+2x2+2x22)+(24x1+24x2+24x22)+...+(288x1+288x2+288x22)

A=2x(1+2+22)+24x(1+2+22)+...+288x(1+2+22)

A=7x(2+24+288) chia hết cho 7

Mà (3;7)=1  =>A chia hết cho 21

6 tháng 12 2017

A=(2+22)+(23+24)+...+(289+290)

=2(1+2)+23(1+2)+...+289(1+2)

=2.3+23.3+...+289.3

Nên A chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

=2(1+2+22)+24(1+2+22)+...+288(1+2+22)

=2.7+24.7+...+288.7

Nên A chia hết cho 7 . Vậy A chia hết cho 21

20 tháng 11 2015

A=2+22+23+...+218

A=(2+22+23)+...+(216+217+218)

A=14+...+216x(2+22+23)

A=14+...+216x14 chia hết cho 14