K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

A chia hết cho 3 vì 

 A=2+2^2+2^3+...+2^10

A = ( 2 + 2^2 ) + (2^3 + 2^4 ) + ...+ (2^9 + 2^10)

A = 1 . (1 + 2) + 2^3 . ( 1 + 2 ) + ...+2^9 . ( 1+2 )

A = 1.3 + 2^3 . 3 +...+ 2^9 . 3

A = ( 1 + 2^3 + ...+ 2^9 ) . 3 chia hết cho 3 ( vì 3 chia hết cho 3)

vậy A chia hết cho 3 

16 tháng 5 2016

a)abc chia hết 27

=>abc chia hết 3 và 9

mà abc chia hết 9 thì 100% chia hết 3

mà abc chia hết 9=>(a+b+c) chia hết 9

=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3

=>bca chia hết 27

16 tháng 5 2016

a ) vì abc chia hết cho 27 

=> bca chia hết cho 27 ( hiển nhiên đúng )

19 tháng 7 2017

ta có 3(2a+3b) chia hết cho 3 <=> 6a+9b chia hết cho 3 <=> 2a+7b+4a+2b chia hết cho 3

mà 2a+7b chia hết cho 3 => 4a+2b chia hết cho 3

13 tháng 8 2018

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{19}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{19}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\left(đpcm\right)\)

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

22 tháng 1 2016

Theo đề bài ta có:

A = \(1+2+2^2+2^3+...+2^{11}\)

\(\Rightarrow A=2^0+2^1+2^2+2^3+...+2^{11}\)

\(\Leftrightarrow A=2^0.\left(1+2+2^2+2^3+2^4+2^5\right)+2^6.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(\Rightarrow A=2^0.63+2^6.63\)

\(\Rightarrow A=63.\left(2^0+2^6\right)\)

\(\Rightarrow A=63.65\)

Vậy A chia hết cho 13 ( vì 65 chia hết cho 13)

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

21 tháng 12 2016

A=3+32+33+...+39+310

A=(3+32)+(33+34)+...+(39+310)

A=3.(1+3)+33.(1+3)+...+39.(1+3)

A=3.4+33.4+...+39.4

A=4.(3+33+...+39)

Vì 4 chia hết cho 4 nên 4.(3+33+...+39) chia hết cho 4

CHÚC BẠN HỌC GIỎI !

8 tháng 10 2017

\(A=1+5^1+5^2+...+5^{101}\)

\(A=\left(1+5^1+5^2\right)+...+\left(5^{99}+5^{100}+5^{101}\right)\)

\(A=\left(1+5^1+5^2\right)+...+5^{99}.\left(1+5^1+5^2\right)\)

\(A=31+...+5^{99}.31\)

\(A=31.\left(1+...+5^{99}\right)⋮31\left(đpcm\right)\)