Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = a+ b+c+d \(\Rightarrow\)B\(⋮\)2
M - B = ( a^2 - a ) + ( b^2 - b) + (c^2 - c ) + (d^2 - d)
= a .(a - 1) +b ( b - 1) + c ( c- 1) + d (d - 1)
Vậy M - B \(⋮\)2 mà B \(⋮\)2
\(\Rightarrow\)M \(⋮\)2
Vậy M là hợp số (Đpcm)
Chúc bn hc tốt!
a)dựa theo công thức tính tổng ta tìm số số hạng:(2017-5):4+1=504 số hạng
Vậy dãy số trên có 504 số hạng
b)ta thấy 5,9,13,17,....,2017,khoảng cách của số đứng trước và số đường sau là:9-5=4 ta cứ cộng thêm 4 đơn vị là ra.
c)cách 1:B={1;5;9;13;17;20;23;26} tớ giải một cách thôi
d)là 5 và 9.
Ta có:
a/b = 11/38 \ a/b = 11/38
b/c = 19/17 | - > b/c = 38/ 34
c/d = 17/8 / c/d = 34/16
=> a/d = 11/16
CHÚC BN HỌC TỐT NHAAAAAAAAAAAAAAAAAA
Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)
\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2
\(\Rightarrow a+b+c+d+e\)chia hết cho 2
Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )
\(\Rightarrow\)a+b+c+d+e là hợp số
Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.
em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi.
em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .
a^2+b^2+c^2+d^2+e^2 chia hết cho 2
* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0
*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn
như vậy a+b+c+d+e cũng là một số chắn
mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2 vậy a+b+c+d+e=2k với k khác 1 => dpcm.
( ở đây em chỉ cần khác 2 loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)
Xét a^2-a = a.(a-1) chia hết cho 2
Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2
=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2
Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2
Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô
Tk mk nha
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2.
Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2
=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.
Do đó a + b + c + d là số chẵn
Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số.
Theo tôi thì bài này nên cho thêm đk là a,b,c,d là số tự nhiên khác 0 nữa thì có lẽ sẽ chuẩn hơn
Lời giải
Đk a,b,c,d là các số tự nhiên lớn hơn 0
Hiển nhiên a,b,c,d>=1
Do đó a+b+c+d>=4>1 (*)
Ta xét 2 trường hợp của d:
TH1: Nếu d là chẵn --> d^2 chẵn, do đó VT phải chẵn, hay a^2+b^2+c^2 chẵn.
Khi đó cả 3 số a,b,c đều phải chẵn, hoặc 2 trong 3 số phải là lẻ. Nếu cả 3 đều chẵn thì a+b+c+d= chẵn +chẵn +chẵn +chẵn chia hết cho 2.
Nếu 2 trong 3 số là lẻ, VD a, b lẻ. Thì a+b+c+d= lẻ +lẻ+chẵn+chẵn= chẵn chia hết cho 2
Kết hợp với điều kiện (*) nên a+b+c+d là hợp số
Th2 d lẻ cũng giải tương tự
Note: Đây là hướng đi nhé