\(^{2005}\)

a,tìm số dư trong phép chia A cho 7

b,tìm chữ số tận cù...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

25 tháng 3 2017

a) Là 6

a, Ta có : 2016 chia hết cho 4 mà lũy thừa

=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )

Vậy chữ số tận cùng của \(1944^{2016}\)là 6

b,  Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)

     mà :    324 đồng dư với  -1 (mod 25 )

           => \(324^{2016}\)đồng dư với  \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )

     và : \(6^{2016}\)\(=6^{2015}.6\)

 Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)

          Có : 7776 đồng dư với 1 ( mod 25 )

          => \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )

        Có : 6 đồng dư với 6 ( mod 25 )

=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )

=> \(1944^{2016}\)chia cho 25 dư 6

=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4

Ta có : 25.k + 6 chia hết cho 4

           24.k + k + 2 + 4 chia hết cho 4

     =>  k + 2 chia hết cho 4

    => k = 4.m - 2

   Thay k = 4.m - 2 ta có :

   \(1944^{2016}=\) 25. (4.m - 2 ) + 6

    \(1944^{2016}=\)100 .m - 50 + 6 

 \(1944^{2016}=\)100.m - 44 = .........00 - 44

\(1944^{2016}=\)...........56

Vậy hai chữ số tận cùng của \(1944^{2016}=\)56

Ai thấy mik làm đúng thì ủng hộ nha !!!

Cảm ơn các bạn nhiều 

17 tháng 1 2019

A=19442005=19442000.194459376.82248224(mod10000)A=19442005=19442000.19445≡9376.8224≡8224(mod10000) nên A có 4 chữ số tận cùng là 8224 nên 2 chữ số tận cùng của A là 24

17 tháng 1 2019

Ta co:A=1944^2005=(1944^2004)*1944=[(1944^2)^1002]*1944

=[(...6)^1002]*1994=(...6)*1994=...4

Vay a co chu so tan cung la 4

CHUC BAN HOC TOT!!!!!!!!!!!!!!!!!!!!

22 tháng 10 2016

mk cung mun giup lam nhung mk ko bit viet so mu o dau

huhu

10 tháng 12 2016

a, A là số chẵn                        b,A chia hết cho5                     c, chữ số tận cùng của A là :0                                  tk cho nhé

15 tháng 4 2017

a) Ta có :

\(A=7+7^2+7^3+................+7^8\)(\(8\) số hạng)

\(A=\left(7+7^2\right)+\left(7^3+7^4\right)+............+\left(7^7+7^8\right)\)(\(4\) nhóm)

\(A=7\left(7^0+7^1\right)+7^3\left(7^0+7\right)+.............+7^7\left(7^0+7^1\right)\)

\(A=7.8+7^3.8+............+7^7.8\)

\(A=8\left(7+7^3+.........+7^7\right)\)

\(8⋮2\Rightarrow8\left(7+7^3+..........+7^7\right)⋮2\)

\(\Rightarrow A⋮2\) \(\Rightarrow A\) là số chẵn

b) Ta có :

\(A=7+7^2+7^3+...........+7^8\)(\(8\) số hạng)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)(\(2\) nhóm)

\(A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

\(A=7.400+7^5.400\)

\(A=400\left(7+7^5\right)\)

\(400⋮5\Rightarrow A⋮5\)

c)

Ta có :

\(A⋮2;A⋮5\)

\(ƯCLN\left(2,5\right)=1\)

\(\Rightarrow A⋮2.5\)

\(\Rightarrow A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là \(0\)

~ Chúc bn học tốt ~