K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 12 2021

\(A=1+5+5^2+5^3+...+5^{59}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)

\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).

\(A=1+5+5^2+5^3+...+5^{59}\)

\(5A=5+5^2+5^3+5^4+...+5^{60}\)

\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)

\(4A=5^{60}-1\)

\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).

2 tháng 10 2016

a)

Ta có :A=275=27.27.27.27.27                                                 Ta có :B=2433=243.243.243

               =(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm)                                      =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)

               =3.3.3.3.3...3(15 thừa số 3)                                                 =3.3.3.3.3...3.3(có 15 thừa số 3)

               =315                                                                                                               =315

Mà315=315

Nên 275=2433

=>A=B

b)Ta có:A=85=8.8.8.8.8                                                            B=27

               =(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)

               =2.2.2.2.2.2..2(có 15 thừ số 2)

Mà 215>27

Nên 85>27

=>A>B

c)(bạn tự tìm người giải ,mình bó)

d)A=1+2+22+23+24+..+21999                                                                                               B=22000

 2.A=2.(1+2+22+23+...+21999)

2.A=2+22+23+24+...+21999+22000

Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)

      A=22000-1

Mà  22000-1<22000

Nên A<B

Câu2:

A=4+42+43+44+...+460

4.A=4.(4+42+43+...+460)

4.A=42+43+44+...+460+461

4.A-4=(42+43+44+...+461)-(4+42+43+...+460)

A=\(\frac{4^{61}-4}{3}\)

bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho

7 tháng 9 2021

mấy phút nữa thôi!

AH
Akai Haruma
Giáo viên
20 tháng 7 2024

Lời giải:

$A=1+5+5^2+5^3+...+5^{98}+5^{99}$

$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$

$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$

$=1+(1+5+5^2)(5+5^4+...+5^{97})$

$=1+31(5+5^4+....+5^{97})$

$\Rightarrow A$ chia $31$ dư $1$

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

13 tháng 12 2015

a) Xin lỗi bạn nhé !!!

 b) 2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 

=> 2010^2 > 2009 . 2011

c) 

\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\)

Nên \(3^{450}>5^{300}\)

13 tháng 12 2015

a) A = 2 + 22 + ... + 22010

       = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

       = 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)

       = 2.3 + 23.3 + ... + 22009.3 chia hết cho 3

   A = 2 + 22 + ... + 22010

      = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

      = 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)

      = 2.7 + 24.7 + ... + 22008.7 chia hết cho 7

b) Xét A = 2009.2011

             = (2010-1) . (2010+1)

             = 2010.2010 + 1.2010 - 1.2010 - 1.1

             = 2010.2010 - 1

          B = A - 1

Vậy B < A

c) Ta có : 3450 = 35.90 = 1590

                   5300 = 53.100 = 15100

Vì 1590 < 15100 nên 3450 < 5300 hay A < B

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa