Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$
$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$
$\Rightarrow A+5^2A=5^{52}-1$
$\Rightarrow 26A=5^{52}-1$
$\Rightarrow 5^{52}-1+1=5^n$
$\Rightarrow 5^{52}=5^n$
$\Rightarrow n=52$
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
bài 1:
\(a,21^{15}=3^{15}\times7^{15}\)
\(27^5\times49^8=3^{15}\times7^{16}\)
Vậy: \(21^{15}< 27^5\times49^8\)
\(b,27^5=3^{15}\)
\(243^3=3^{15}\)
Vậy: \(27^5=243^3\)
Bài 2:
\(10^x+48=48^y\)
=100..0+48=\(48^y\)
=100...048=\(48^y\)
còn các bước tiếp mik chưa nghĩ ra cậu suy nghĩ thêm nhé
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2