Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)
Áp dung vào bài toán ta được
\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)
\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)
Vậy \(A^2< \frac{1}{201}\)
gọi tổng đó là A
A<1/2^2 + 1/2.3+1/3.4+1/4.5...+1/199.200
A<1/2^2 + 1/2-1/3+1/3-1/4+1/4-1/5+...+1/199-1/200
A<1/2^2+1/2-1/200
A<3/4-1/200<3/4 (đpcm
để so sánh A> hơn 1/2 thì mình so sánh theo cách:
A=1/2^2+1/3^2+....+1/200^2>1/2^2+1/2^2=1/2
vậy cần so sánh 1/3^2+....+1/200^2 với 1/2^2
1/3^2+1/4^2+....+1/200^2 > 1/3.4+1/4.5+1/5.6+...+1/200.201=1/3-1/4+1/4-1/5+1/5-1/6+...+1/200-1/201=1/3-1/201=66/201>66/266=1/4
vậy là chứng minh xong
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
7/12 < A < 5/6. ... +1/99.100. =(1/1.2+1/3.4)+(1/5.6+...+1/99.100). =7/12+(1/5.6+...+1/99.100)>7/12(1).
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100.
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100) .<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6.
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{198\cdot199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{199}\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
A < 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 90x 1
16 36 64 100 144 196 256 324 400 484
A < 698249 + 45
5080320 242
A < 197445329 < 1
607458720 3
=> A < 1
3