Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1x\left(2-1\right)+2x\left(3-1\right)+3x\left(4-1\right)+...+20x\left(21-1\right)\)
\(=1x2-1+2x3-2+3x4-3+...+20x21-20\)
\(=\left(1x2+2x3+3x4+...+20x21\right)-\left(1+2+3+...+20\right)\)
\(A=1x2+2x3+3x4+...+21x21\)
\(3xA=1x2x3+2x3x3+3x4x3+...+20x21x3\)
\(3xA=1x2x3+2x3x\left(4-1\right)+3x4x\left(5-2\right)+...+20x21x\left(22-19\right)\)
\(3xA=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-19x20x21+20x21x22\)
\(3xA=20x21x22\Rightarrow A=20x7x22=3080\)
\(B=1+2+3+...+20=\frac{20x\left(1+20\right)}{2}=210\)
\(C=A-B=3080-210=2870\)
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)