Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thử vào đây xem có đúng ko
http://olm.vn/hoi-dap/question/55410.html
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)
=>\(A=2-\frac{1}{2^{2013}}< 2\)
Vậy A<2
a, Gọi số cần tìm là a
Ta có: a chia 9 dư 5 => a - 5 chia hết cho 9 => 2(a - 5) chia hết cho 9 => 2a - 10 chia hết cho 9 => 2a - 10 + 9 chia hết cho 9 => 2a - 1 chia hết cho 9
a chia 7 dư 4 => a - 4 chia hết cho 7 => 2(a - 4) chia hết cho 7 => 2a - 8 chia hết cho 9 => 2a - 8 + 7 chia hết cho 7 => 2a - 1 chia hết cho 7
a chia 5 dư 3 => a - 3 chia hết cho 5 => 2(a - 3) chia hết cho 5 => 2a - 6 chia hết cho 5 => 2a - 6 + 5 chia hết cho 5 => 2a - 1 chia hết cho 5
=> 2a - 1 thuộc BC(5;7;9)
5 = 5
7 = 7
9 = 9
BCNN(5,7,9) = 5.7.9 = 315
=> 2a - 1 = 315 => 2a = 316 => a = 158
Vậy số cần tìm là 158
b, Ta có:
A = 1 + 2012 + 20122 + ... + 201272
2012A = 2012 + 20122 + 20123 +...+ 201273
2012A - A = (2012 + 20122 + 20123 + .... + 201273) - (1 + 2012 + 20122 + ... + 201272)
2011A = 201273 - 1
A = \(\frac{2012^{73}-1}{2011}\)
Vì \(\frac{2012^{73}-1}{2011}< 2012^{73}-1\) nên A < B
Vậy A < B
A=1+2+22+...+279+280
A2=2+22+23+...+280+281
A2-A1=A1=2+281
2+281lon hon 281
vay A lon hon B
Minh nghĩ vậy ko biét đúng hay ko
A = 1 + 22 + ... + 280
2A = 2 + 23 + ... + 281
2A - A = ( 2 + 23 + ... + 281 ) - ( 1 + 22 + ... + 280 )
A = 281 - 1 < 281 = B
Vậy A < B
ko bit
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
......................
\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}< 1\)
Vậy A < 1