K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2015

A = \(\frac{1}{2}+\frac{1}{2^{^2}}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

2\(\times\)A=\(\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{10}}\)

2A - A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\) -\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

       A= 1 - \(\frac{1}{2^{10}}\)

       A= \(\frac{1023}{1024}\)

      một số chỗ hơi tắt bạn thông cảm nha

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

3 tháng 4 2015

Ta có (1/2)A = 1/22 + 1/23 + ... + 1/210 + 1/211

=> (1/2)A - A = -(1/2)A = (1/22 + 1/23 + ... + 1/210 + 1/211) - (1/2 + 1/22 + ... + 1/210)

                                  = 1/211 - 1/2

                          => A = 1 - 1/210

                                  => A + 1/210  = 1

15 tháng 4 2017

dễ mà mình thi rồi giờ thì hết kiến thức ko làm đc sory ko làm đc

15 tháng 4 2017

A=1/2*2+1/3*3+1/4*4+...+1/2017*2017.

=>A<1/1*2+1/25*3+1/3*4+...+1/2016*2017.

=>A<1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017.

=>A<1-1/2017<1.

=>A<1(đpcm).

tk mk nha có j kb.

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

17 tháng 1 2022

Bài 1

a/

\(A=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+10\left(11-1\right)=\)

\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)=\)

Đặt \(B=1.2+2.3+3.4+...+10.11\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+10.11.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-9.10.11+10.11.12=\)

\(=10.11.12\Rightarrow B=\frac{10.11.12}{3}=4.10.11\)

\(\Rightarrow A=B-\left(1+2+3+...+10\right)=4.10.11+\frac{10.\left(1+10\right)}{2}=\)

\(=4.10.11+5.11=11.\left(4.10+5\right)=11.45=495\)

b/

\(B=5^2\left(1+2^2+3^2+...+10^2\right)=25.495=12375\)

Bài 2

Số số hạng của M \(=\frac{2n-1-1}{2}+1=n\)

\(M=\frac{n\left[1+\left(2n-1\right)\right]}{2}=n^2\)là số chính phương

15 tháng 3 2017

\(\frac{1}{2^2}nha\)đề sai đó

\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)

do dó D<1

15 tháng 3 2017

thank kiu

Vì  giá trị  của D bé hơn 1

18 tháng 3 2018

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)

\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)

12 tháng 4 2019

Thật vậy   1/22  <  1/1.2

                 1/23  <  1/2.3

              ........................

             1/20122  <  1/2011.2012

             1/20132  <  1/2012.2013

                                                       

1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013  (1)

Mà  1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013

    = 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013

    = 1 - 1/2013

    = 2012/2013 < 1    (2)

Từ (1) và (2) => A<1