Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Ta có (1/2)A = 1/22 + 1/23 + ... + 1/210 + 1/211
=> (1/2)A - A = -(1/2)A = (1/22 + 1/23 + ... + 1/210 + 1/211) - (1/2 + 1/22 + ... + 1/210)
= 1/211 - 1/2
=> A = 1 - 1/210
=> A + 1/210 = 1
dễ mà mình thi rồi giờ thì hết kiến thức ko làm đc sory ko làm đc
A=1/2*2+1/3*3+1/4*4+...+1/2017*2017.
=>A<1/1*2+1/25*3+1/3*4+...+1/2016*2017.
=>A<1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017.
=>A<1-1/2017<1.
=>A<1(đpcm).
tk mk nha có j kb.
Ta có ;
S = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7
= ( 1 + 2 ) + ( 2 2 + 2 3 ) + ( 2 4 + 2 5 ) + ( 2 6 + 2 7 )
= ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )
= 3 + 2 2 .3 + 2 4 .3 + 2 6 .3
= 3 . ( 1 + 2 2 + 2 4 + 2 6 ) chia hết cho 3 ( Vì 3 chia hết cho 3 )
A = 3 + 3 2 + 3 3 + ..... + 3 9 + 3 10
= ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )
= 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )
= 3 . 4 + 3 3 . 4 + .... + 3 9 . 4
= 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )
\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)
Bài 1
a/
\(A=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+10\left(11-1\right)=\)
\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)=\)
Đặt \(B=1.2+2.3+3.4+...+10.11\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+10.11.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-9.10.11+10.11.12=\)
\(=10.11.12\Rightarrow B=\frac{10.11.12}{3}=4.10.11\)
\(\Rightarrow A=B-\left(1+2+3+...+10\right)=4.10.11+\frac{10.\left(1+10\right)}{2}=\)
\(=4.10.11+5.11=11.\left(4.10+5\right)=11.45=495\)
b/
\(B=5^2\left(1+2^2+3^2+...+10^2\right)=25.495=12375\)
Bài 2
Số số hạng của M \(=\frac{2n-1-1}{2}+1=n\)
\(M=\frac{n\left[1+\left(2n-1\right)\right]}{2}=n^2\)là số chính phương
\(\frac{1}{2^2}nha\)đề sai đó
\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)
do dó D<1
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)
\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)
Thật vậy 1/22 < 1/1.2
1/23 < 1/2.3
........................
1/20122 < 1/2011.2012
1/20132 < 1/2012.2013
1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013 (1)
Mà 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013
= 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013
= 1 - 1/2013
= 2012/2013 < 1 (2)
Từ (1) và (2) => A<1
A = \(\frac{1}{2}+\frac{1}{2^{^2}}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2\(\times\)A=\(\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{10}}\)
2A - A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\) -\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
A= 1 - \(\frac{1}{2^{10}}\)
A= \(\frac{1023}{1024}\)
một số chỗ hơi tắt bạn thông cảm nha