K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 11 2019

a/ \(\overrightarrow{AB}=\left(4;8\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\left(2;-1\right)\)

Phương trình AB:

\(2\left(x-3\right)-\left(y-4\right)=0\Leftrightarrow2x-y-2=0\)

A;P;B thẳng hàng \(\Rightarrow P\in AB\Rightarrow P\left(x;2x-2\right)\)

\(\overrightarrow{AP}=\left(x+1;2x+2\right)\Rightarrow AP^2=\left(x+1\right)^2+\left(2x+2\right)^2=5\left(x+1\right)^2\)

\(\Rightarrow5\left(x+1\right)^2=\left(3\sqrt{5}\right)^2\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P\left(2;2\right)\\P\left(-4;-10\right)\end{matrix}\right.\)

NV
10 tháng 11 2019

Gọi \(M\left(x;0\right)\)

b/ \(\overrightarrow{AM}=\left(x+1;4\right)\Rightarrow MA=\sqrt{\left(x+1\right)^2+4^2}\)

\(\overrightarrow{MB}=\left(3-x;4\right)\Rightarrow MB=\sqrt{\left(3-x\right)^2+4^2}\)

\(T=MA+MB=\sqrt{\left(x+1\right)^2+4^2}+\sqrt{\left(3-x\right)^2+4^2}\)

Áp dụng BĐT Mincopxki:

\(T\ge\sqrt{\left(x+1+3-x\right)^2+\left(4+4\right)^2}=4\sqrt{5}\)

\(T_{min}=4\sqrt{5}\) khi \(x+1=3-x\Rightarrow x=1\Rightarrow M\left(1;0\right)\)

c/ Tương tự như câu b:

\(MB+MC=\sqrt{\left(3-x\right)^2+4^2}+\sqrt{\left(x-2\right)^2+5^2}\)

\(MB+MC\ge\sqrt{\left(3-x+x-2\right)^2+\left(4+5\right)^2}=\sqrt{82}\)

Dấu "=" xảy ra khi \(\frac{3-x}{4}=\frac{x-2}{5}\Rightarrow x=\frac{23}{9}\Rightarrow M\left(\frac{23}{9};0\right)\)

1: D thuộc Ox nên D(x;0)

vecto AB=(-3;4)

vecto DC=(-3-x;-1)

Để ABDC là hình thang thì \(\dfrac{-3}{-x-3}=\dfrac{4}{-1}=-4\)

=>3/x+3=4

=>x+3=3/4

=>x=-9/4

2: \(\overrightarrow{MA}=\left(3-x;0\right)\)

vectoMC=(-3-x;-1)

Để |vecto MA+vecto MC| nhỏ nhất thì vecto MA+vecto MC=vecto 0

=>M là trung điểm của AC

=>M(0;-1/2)

30 tháng 3 2017

Giải bài 2 trang 93 SGK hình học 10 | Giải toán lớp 10

30 tháng 3 2017

Giả sử M có tọa độ (x;y), ta có:

MA2= (x - 1)2 + (y + 2)2 ;

MA2= (x + 3)2 + (y - 1)2

MC2= (x - 4)2 + (y + 2)2

MA2 + MB2 = MC2 nên x2 + y2 + 12x - 10y - 5 = 0.

Vậy { M } là đường tròn tâm I (-6;5), bán kính R = \(\sqrt{66}\)

24 tháng 6 2020

Đặt \(\left(x;y;z\right)\rightarrow\left(a;\frac{1}{b};c\right)\Rightarrow x+y+z=3\)

Khi đó:

\(M=\frac{1}{x+1}+\frac{1}{xy+1}+\frac{1}{xyz+3}\)

\(\ge\frac{9}{x+xy+xyz+5}\)

Mà theo AM - GM:

\(x+xy+xyz=x\left(1+y+yz\right)=x\left[1+y\left(z+1\right)\right]\le x\left[1+\left(\frac{4-x}{2}\right)^2\right]\)

\(=4-\frac{\left(x-2\right)^2\left(4-x\right)}{4}\le4\)

Đẳng thức xảy ra tại \(x=2;y=1;z=0\)

24 tháng 6 2020

Vào TKHĐ của mình để xem hình ảnh nhé !

Không có mô tả ảnh.

Trong hình ảnh có thể có: văn bản

Cre: Chủ tịch học toán