K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Giả sử a1, a2, ..., a2017 là 2017 số khác nhau. 

Và0 < a1 < a2 ... < a2017

Vì là số nguyên dương nên ta có

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)

Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau

26 tháng 5 2020

có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko 

18 tháng 11 2016

Giả sử không có 2 số nào bằng nhau. Coi \(a_1>a_2>a_3>...>a_{2016}>a_{2017}\)

Do \(a_1;a_2;...;a_{2017}\in Z_+\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1009\)( Vô lý)

Do đó có ít nhất 2 số bằng nhau.

11 tháng 6 2019

Bài 2.

\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)

( 3 số nguyên liên tiếp chia hết cho 3)

\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3

=> P chia hết cho 3