K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

What the heck! Bài lớp 6 khó thiệt! Phải chuẩn bị tinh thần thoi!

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

24 tháng 3 2016

giúp tui phần b bài này

20 tháng 3 2016

nhanh giúp mình

11 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< 1+1-\frac{1}{100}\)

=> \(A< 2-\frac{1}{100}< 2\)

Vậy \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)(đpcm)

14 tháng 2 2016

Dễ thì trình bày thử coi.

14 tháng 5 2018

Ta có:

A<1+1/1.2+1/2.3+...+1/99.100

A<1+1/1-1/2+1/2-1/3+...+1/99-1/100

A<1+1/1-1/100

A<2-1/100<2

SUY RA A<2(DPCM)

14 tháng 5 2018

a=\(\frac{1.1-\frac{1}{2^{2012}}}{\frac{1}{2}}\)

a=\(\frac{2^{2012}-1}{2^{2012}}.2\)

a=2