Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
\(A=10^{2022}+10^{2021}+10^{2020}+10^{2019}+8\)
\(A=8.125\left(10^{2009}+10^{2008}+10^{2007}+10^{2006}\right)+8\)
\(A=8.\left[125.\left(10^{2009}+10^{2008}+10^{2007}+10^{2006}\right)+1\right]⋮8\)
Lại có: \(10^{2012};10^{2011};10^{2010};10^{2009}\) khi chia cho 3 dư 1
Mà 8 chia 3 dư 2
⇒ A chia cho 3 có số dư là dư của phép chia ( 1 + 1 + 1 + 1 + 2 ) : 3
Hay dư của phép chia 6 chia 3 có số dư bằng 0
⇒ A ⋮ 3
Vì 8 và 3 là hai số nguyên tố cùng nhau nên
⇒ A ⋮ ( 8.3 )
⇒ A ⋮ 24
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ; B = \(\dfrac{2020+2021}{2021+2022}\)
B = \(\dfrac{2020+2021}{2021+2022}\) = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)
\(\dfrac{2020}{2021}\) > \(\dfrac{2020}{2021+2022}\)
\(\dfrac{2021}{2022}\) > \(\dfrac{2021}{2021+2022}\)
Cộng vế với vế ta có:
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B
Vậy A > B
A = \(\dfrac{10^{10}-1}{10^{11}-1}\)
A \(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1
B = \(\dfrac{10^{10}+1}{10^{11}+1}\)
B \(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\) = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1
Vì 10 A< 1< 10B
Vậy A < B
Lời giải:
Giả sử cả 3 số đều nguyên tố.
Ta thấy: $a+5-a=5$ lẻ nên $a,a+5$ khác tính chẵn lẻ. Tức là 1 trong 2 số sẽ nhận giá trị chẵn.
Mà $a,a+5$ là số nguyên tố, $a<a+5$ nên $a$ nhận giá trị chẵn bằng $2$ (vì 2 là snt chẵn duy nhất)
Khi đó: $a+10=2+10=12$ không là số nguyên tố (trái với giả sử)
Vậy điều giả sử là sai.
Tức là trong 3 số có ít nhất 1 số là hợp số.
Nếu như a là số chính phương thì a có dạng : \(a^2\) và các chữ số tận cùng của chúng phải là các số : \(1;4;9;16;25;36;49...\)
Xét a ta có : \(10^{2022};10^{2021};10^{2020};10^{2019}\) đều có chữ số tận cùng là : 0
\(\Rightarrow a=1....0+8\)
\(\Rightarrow a=1...8\)
mà số chính phương không có số nào tận cùng bằng 8
\(\Rightarrow a\) không phải là số chính phương