K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2021

https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html

Em tk trang đó nha

29 tháng 3 2021

Ta có 

\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)

\(\dfrac{1}{2}>\dfrac{1}{100}\)

\(\dfrac{1}{3}>\dfrac{1}{100}\)

................

\(\dfrac{1}{100}=\dfrac{1}{100}\)

=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)

=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)

=> 1 < A < 2

Vậy A không phải số tự nhiên

 

5 tháng 4 2017

a ko the la so tu nhien vi ta inh tong day nay dc 99/100 ma 1+99/100 thi se bang mot phan so

21 tháng 3 2020

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}=\frac{2.3....100+1.3.....100+1.2.4.....100+....+1.2....99}{1.2.3....100}\)

\(\text{Trên tử có số hạng:}1.2.3....98.100\text{ không chia hết cho 99 còn các số hạng khác đều chia hết cho 99}\)

\(\text{nên tử không chia hết cho 99(1) mà mẫu:}1.2.3....99.100\text{ có thừa số 99 nên chia hết cho 99(1)}\)

\(\text{Từ (1) và (2) suy ra: A}\notinℕ\)

9 tháng 8 2016

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!

Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)

Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)

Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.

====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.

8 tháng 2 2015

tính nhanh tổng a ta thấy tổng là phân số vậy thì quá rõ

8 tháng 4 2015

Đặt mẫu số chung là: 2^6.3^4.....97

Thừa số phụ của các thừa số tương ứng là k1, k2, k3,..., k99.

Khi đó A= k1+k2+...+k99/2^6.3^4.....97

Ta thấy mẫu số chung của A là tích của các thừa số nguyên tố trong đó có thừa số 2 với 2^6 lớn nhất. Đặt mẫu số chung là 2^6.P (P là tích các thừa số nguyên tố lẻ không vượt quá 100). Trong  tất cả các thừa số phụ của các p/s, chỉ có duy nhất thừa số phụ của p/s 1/64=1/2^6 là số lẻ còn tất cả các thừa số phụ còn lại đều là chẵn. Nên khi thực hiện phép tính thì mẫu số chắn còn tử số lẻ => A ko phải số tự nhiên

9 tháng 3 2017

Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng  , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)

Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên 

21 tháng 7 2015

Gọi 3 số đó là a; a+1; a+2. Ta có:

a + (a+1) + (a+2)

= a+a+a+1+2

= 3a +3 

= 3(a+1) chia hết cho 3

=> Tổng 3 số tự nhiên liên tiếp chia hết cho 3 (Đpcm)


Gọi 4 số đó là n; n+1; n+2; n+3. Ta có:

n + (n+1) + (n+2) + (n+3)

= n+n+n+n+1+2+3

= 4n +6

Vì 4n chia hết cho 4 mà 6 chia 4 dư 2

=> 4n+6 chia 4 dư 2

=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (Đpcm)

18 tháng 3 2017

ai mà biết đc

18 tháng 3 2017

bạn chỉ cần lấy 1/100-1 là sẽ ra

nhớ tích và kết bạn với tớ nhé

24 tháng 5 2020

Nhận xét : Tổng A có 24 phân số 

Cần quy đồng mẫu các phân số và xác định mối quan hệ giữa tử và mẫu của các phân số và phân số tổng.

\(BCNN\left(2,3,4,...,25\right)=2^4\cdot3^2\cdot5^2\cdot7\cdot11\cdot13\cdot17\cdot19\cdot23=7\cdot9\cdot11\cdot13\cdot16\cdot17\cdot19\cdot23\cdot25\)

\(\frac{1}{25}=\frac{7\cdot9\cdot11\cdot13\cdot16\cdot17\cdot19\cdot23}{MC}\) là một phân số có dạng tử là số lẻ,còn mẫu là số chẵn

Tử của 23 phân số còn lại là chẵn vì có thừa số 16 hoặc là ước chẵn  của 16(là 2,4,8)

Vậy phân số tổng A có dạng tử là tổng của 23 số chẵn và 1 số lẻ nên tử là một số lẻ,còn mẫu chung lại là một số chẵn,mà số lẻ chia cho số chẵn

=> Không thể là số tự nhiên

P/S : k chắc :v