K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(bdt\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng) . Dấu "=" khi a=b

Xét \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng với mọi a, b)

\(\Leftrightarrow\) đpcm

10 tháng 2 2020

a, Ta có : \(A=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-\sqrt{x}+2-\left(\sqrt{x}+1\right)}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-2\sqrt{x}+1}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\frac{\left(x+2\sqrt{x}\right)}{\left(2x-2\sqrt{x}\right)}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(2x-2\sqrt{x}\right)}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}\left(\sqrt{x}-1\right)}\)

=> \(A=\frac{\sqrt{x}+2}{2\sqrt{x}+2}\)

b, Ta có : \(A=\frac{\sqrt{x}+1+1}{2\left(\sqrt{x}+1\right)}=\frac{1}{2}+\frac{1}{2\left(\sqrt{x}+1\right)}\)

- Ta thấy : \(\sqrt{x}+1>0\)

=> \(\frac{1}{2\left(\sqrt{x}+1\right)}>0\)

=> \(\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{1}{2}>\frac{1}{2}\)

=> \(A>\frac{1}{2}\) ( đpcm )

21 tháng 11 2016

Câu 1

ta có

phương trình tương đương

\(x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Nhận thấy \(\begin{cases}\\\\\end{cases}\begin{cases}\left(\sqrt{x-2}-1\right)^2\ge0\\\left(\sqrt{y-3}-2\right)^2\ge0\\\left(\sqrt{z-5}-3\right)^2\ge0\end{cases}\)

vậy để thỏa mãn pt, ta cần cả 3 biểu thức trên bằng o hay x = 3 ; y = 7 ; z = 14

29 tháng 6 2017

1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)

\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)

\(=32\)

b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)

29 tháng 6 2017

Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)

Ta lại có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)

\(\Rightarrow1< A< 2\)

Vậy \(A\notin N\)

11 tháng 7 2015

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Áp dụng bất đẳng thức Bu.nhia.cop.xki

\(\left(\sqrt{c}\sqrt{a-c}+\sqrt{b-c}\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\)

\(\Rightarrow\sqrt{c\left(a-c\right)}\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)