Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
ĐK : \(x\ne2\); \(x\ne-2\)
a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)
b) - Để A > 0 thì x - 1 > 0 => x > 1
- Để A < 0 thì x - 1 < 0 => x < 1
c) Để | A | = 5 thì | x-1 | = 5
+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình
x - 1 = 5 => x = 6 ( thỏa mãn )
+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình :
-x + 1 = 5 < = > -x = 4 <=> x = -4 ( thỏa mãn )
Vậy tập nghiệm của phương trình là S = { -4 ; 6 }
\(a.-x^2< x\Leftrightarrow-x^2-x< 0\Leftrightarrow-x\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x< 0\\x< -1\end{cases}}\)
\(b.x\left(x-1\right)< 0\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 1\end{cases}}\)
\(c.\left(x-5\right)\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x-5>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>5\\x>2\end{cases}}}\)
\(d.\frac{x-2}{x-3}>0\Leftrightarrow\orbr{\begin{cases}x-2>0\\x-3>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>2\\x>3\end{cases}}}\)
Con Chim 7 Màu:Hình như bạn có nhầm lẫn gì ở câu a) và b) ạ.
a)\(-x^2< x\Rightarrow x^2>-x\Leftrightarrow x\left(x+1\right)>0\Leftrightarrow\orbr{\begin{cases}x>0\\x+1< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)
b)\(x\left(x-1\right)< 0\Leftrightarrow\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< 1\end{cases}}\Leftrightarrow0< x< 1\)
c)Do x - 5 < x - 2 nên để \(\left(x-5\right)\left(x-2\right)>0\Rightarrow\orbr{\begin{cases}x-5>0\\x-2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>5\\x< 2\end{cases}}\)
d) \(\frac{x-2}{x-3}>0\left(x\ne3\right)\Leftrightarrow x-2>0\Leftrightarrow x>2\)
ĐKXĐ: \(x\ne-5;0\)
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x.\left(x+5\right)}\)
\(=\frac{\left(x^2+2x\right).x}{2x.\left(x+5\right)}+\frac{2.\left(x+5\right).\left(x-5\right)}{2x.\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2.\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
b. \(A=0\Leftrightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{1}{4}\Leftrightarrow\frac{x-1}{2}=\frac{1}{4}\Leftrightarrow4x-4=2\Leftrightarrow4x-6=0\Leftrightarrow x=\frac{3}{2}\)
c. Với x=0 thì \(A=\frac{0-1}{2}=-\frac{1}{2}\)
Với x=2 thì: \(A=\frac{2-1}{2}=\frac{1}{2}\)
d. \(A>0\Leftrightarrow\frac{x-1}{2}>0\Rightarrow\left(x-1\right).2>0\Rightarrow x-1>0\Leftrightarrow x>1\)
\(A< 0\Leftrightarrow\frac{x-1}{2}< 0\Leftrightarrow\left(x-1\right).2< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1;x\ne-5,0\)
e. \(A=\frac{x-1}{2}\inℤ\Rightarrow x-1\in Z\Rightarrow x\inℤ\)
Và \(\left(x-1\right)⋮2\Rightarrow x:2dư1\)
Vậy \(A\in Z\Leftrightarrow x\inℤ\)và x chia 2 dư 1
a) ĐKXĐ: \(x\ne\pm2\)
\(A=\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x-2x+4}{x^2-4}\)\(=\frac{x^2+4}{x^2-4}\)
b) \(A>0\) \(\Rightarrow\)\(\frac{x^2+4}{x^2-4}>0\)
Mà \(x^2+4>0\) \(\Rightarrow\)\(x^2-4>0\)
\(\Rightarrow\)\(x^2>4\)
Nếu x dương thì \(x>\sqrt{4}=2\)
Nếu x âm thì \(x< \sqrt{4}=2\)