1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản b) Cho A...
Đọc tiếp
1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)
2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)
3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:
Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản
b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)
4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)
5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên
6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)
8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)
9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)
10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau
Đặt: \(k=\frac{a^2+b^2}{ab+1}\) , \(k\in Z\)
Giả sử, k không là số chính phương.
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu
\(S=a,b\in NxN\)| \(\frac{a^2+b^2}{ab+1}=k\)
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+B đạt min
Giả sử: \(A\ge B>0\). Cố định B ta còn số A thảo phương trình \(k=\frac{x+B^2}{xB+1}\)
\(\Leftrightarrow x^2-kBx+B^2-k=0\)phương trình có nghiệm là A.
Theo Viet: \(\hept{\begin{cases}A+x_2=kB\\A.x_2=B^2-k\end{cases}}\)
Suy ra: \(x_2=kB-A=\frac{B^2-k}{A}\)
Dễ thấy x2 nguyên.
Nếu x2 < 0 thì \(x_2^2-kBx_2+B^2-k\ge x_2^2+k+B^2-k>0\) vô lý. Suy ra: \(x_2\ge0\) do đó \(x_2,B\in S\)
Do: \(A\ge B>0\Rightarrow x_2=\frac{B^2-k}{A}< \frac{A^2-k}{A}< A\)
Suy ra: \(x_2+B< A+B\) (trái với giả sử A+BA+B đạt min)
Suy ra kk là số bình phương