Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
Ta có: a chia 3 dư 1 => a = 3k + 1 (k thuộc N)
b chia 3 dư 2 => b = 3k + 2 (k thuộc N)
=> a + b = (3k + 1) + (3k + 2) = 6k + 3 = 3(2k + 1) chia hết cho 3
Vậy a + b chia hết cho 3.
a chia 3 dư 1 => a=3x+1
b chia 3 dư 2 => b=3k+2
=>a*b=9kx+3k+6x+2 chia 3 dư 2