K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

bạn giả sử 2 số đó ko nguyên tố cùng nhau thì có ước chung nguyên tố là d(d là số tự nhiên khác 0 và >1).

ta có:ab chia hết cho d =>a hoặc b chia hết cho b.

       và a chia hết cho d

thử từng trường hợp ra là xong!

16 tháng 11 2016

Bạn xem ở đây nhé.

Câu hỏi của Lê Nguyễn Bảo Trân - Toán lớp 6 - Học toán với OnlineMath

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

24 tháng 9 2021

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

29 tháng 11 2015

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

tick nha!

29 tháng 11 2015

CHTT nha avt342767_60by60.jpgLê Nguyễn Bảo Trân

5 tháng 2 2023

khó quá , các bạn giúp tớ với