Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5
a chia 5 dư 1 \(\Rightarrow a=5k+1\)( \(k\in N^{\text{*}}\) )
b chia 5 dư 4 \(\Rightarrow b=5q-1\)( \(q\in N^{\text{*}}\) )
Vì a, b là 2 số liên tiếp nên \(a=b+1\)hoặc \(b=a+1\)
TH1: \(a=b+1\)
\(\Leftrightarrow5k+1=5q-1+1\)
\(\Leftrightarrow5k=5q-1\)
\(\Leftrightarrow5\left(k-q\right)=-1\)
\(\Leftrightarrow k-q=-\frac{1}{5}\)
Vì \(k;q\in N^{\text{*}}\)nên không có giá trị thỏa mãn
TH2: \(b=a+1\)
\(\Leftrightarrow5q-1=5k+1+1\)
\(\Leftrightarrow5q-5k=3\)
\(\Leftrightarrow q-k=\frac{3}{5}\)
Tương tự ta cũng thấy rằng không có giá trị nào thỏa mãn
p/s: bạn xem lại đề nhé, ta có thể lí luận đơn giản như sau : 2 số tự nhiên liên tiếp chia 5 có dư luôn có hiệu 2 số dư là 1 nên không có giá trị nào thỏa mãn
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm
Kết quả của bài là : 69.Bạn nhé!
cách làm thế nào hả bạn.Nguyên