K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(a^2+b^2\le ab+1\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^5+b^5\right)\left(a^3+b^3\right)\le\left(a^7+b^7\right)\left(a+b\right)\)

\(\Leftrightarrow ab^7+a^7b-a^3b^5-a^5b^3\ge0\)

\(\Leftrightarrow ab\left(b^6+a^6-a^2b^4-a^4b^2\right)\ge0\)

\(\Leftrightarrow ab\left(b-a\right)^2\left(b+a\right)^2\left(b^2+a^2\right)\ge0\) (đúng)

\(\RightarrowĐPCM\)

Dấu đẳng thức xảy ra khi ......

10 tháng 4 2017

à ra vậy mk lại cứ Am cho cái giả thiết

28 tháng 5 2016

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)

12 tháng 7 2023

Mày nhìn cái chóa j

4 tháng 3 2016

câu a) chỉ cần thay đại X và Y làm sao cho thõa rồi thay là được. Như trường hợp này ta có thể thay X=2 và

Y=\(\sqrt{2}\)

thay vào ta được A= - 8

câu b) Vì A(x) chia hết cho B(x) và C(x) nên A(x) chia hết cho B(x).C(x)=(x-3)(2x+1)=\(2x^2-5x-3\)

a=-5 và b=-3

\(\Rightarrow\)thay vào ta tính dược 3a-2b = 3.(-5)-2.(-3)= -15+6 = -9