Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
hay \(a=\sqrt{5}+1\)
\(T=\dfrac{\left(6+2\sqrt{5}\right)^2-4\cdot\left(16+8\sqrt{5}\right)+6+2\sqrt{5}+6\sqrt{5}+6+4}{6+2\sqrt{5}-2\sqrt{5}-2+12}\)
\(=\dfrac{56+24\sqrt{5}-50-24\sqrt{5}}{16}=\dfrac{6}{16}=\dfrac{3}{8}\)
a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)
= \(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)
= \(|2a^2-3|-|a^2-4|\)
= \(2a^2-3+a^2-4\)
= \(3a^2-7\)
Thay a=\(\sqrt{3}\).Ta có:
\(3.\left(\sqrt{3}\right)^2-7\)
= 3.3-7=2
b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)
= \(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)
= \(\sqrt{\left(a\sqrt{10}-6\right)^2}\)
= \(|a\sqrt{10}-6|\)
= \(-a\sqrt{10}+6\)
Thay a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:
\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)
= -3+6 =3
Bài 3:
a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)
tách 11 ra thành \(\sqrt{3}\) mũ 2 + căn 8 mũ 2
áp dụng hẳng đẳng thức đáng nhớ A^2+2AB +B^2=(A+B)^2
vào \(\sqrt{11+4\sqrt{6}}\)
.Bản thử đi nhé kết quả của mình là \(\sqrt{3}\)+\(\sqrt{8}\)
Vì ko gõ đc căn nên mình ko giải hẳn hoi ra đc .Bạn thông cảm ha.
Chúc bn hok tốt!
Đặt \(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow D^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow D^2=8+2\sqrt{16-10-2\sqrt{5}}\)
\(\Leftrightarrow D^2=8+2\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow D^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow D^2=8+2\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow D^2=6+2\sqrt{5}\)
\(\Leftrightarrow D^2=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow D=\sqrt{5}+1\)
Thay vào ta tính được: \(A=\sqrt{5}+1-\sqrt{5}=1\)
Vậy A = 1
Lời giải:
Bình phương biểu thức $a$ ta có:
\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{4^2-(10+2\sqrt{5})}\)
\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5+1-2\sqrt{5}}\)
\(=8+2\sqrt{(\sqrt{5}-1)^2}=8+2(\sqrt{5}-1)=6+2\sqrt{5}\)
\(=[\pm (\sqrt{5}+1)]^2\)
Mà $a>0$ nên \(a=\sqrt{5}+1\)
Xét thêm 1 số \(1-\sqrt{5}\)
Ta thấy \(\left\{\begin{matrix} \sqrt{5}+1+1-\sqrt{5}=2\\ (\sqrt{5}+1)(1-\sqrt{5})=-4\end{matrix}\right.\) Do đó, theo định lý Viete đảo thì $a$ là nghiệm của pt \(x^2-2x-4=0\), tức là $a^2-2a-4=0$
Do đó:
\(T=\frac{a^2(a^2-2a-4)-2a(a^2-2a-4)+a^2-2a-4+8}{a^2-2a-4-10a+16}\)
\(=\frac{8}{-10a+16}=\frac{8}{-10(\sqrt{5}+1)+16}=\frac{8}{6-10\sqrt{5}}=\frac{4}{3-5\sqrt{5}}\)