K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

a) điều kiện xác định : \(x\ge0;x\ne1\)

ta có : \(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)

\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\)

\(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\) \(\Leftrightarrow A=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)\left(x-1\right)}{2}\)

\(\Leftrightarrow A=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b) để \(A>0\Leftrightarrow-x+\sqrt{x}>0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}\ne0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\1>x\end{matrix}\right.\) \(\Leftrightarrow0< x< 1\)

c) ta có : \(A=-x+\sqrt{x}=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow A_{max}=\dfrac{1}{4}\) dấu "=" xảy ra khi \(x=\dfrac{1}{4}\)

24 tháng 10 2018

Mysterious Person giúp mk nha

24 tháng 10 2018

a) ĐKXĐ: x ≥ 0; x ≠ 1

A = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)

= \(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)

=\(\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

= \(2\sqrt{x}.\dfrac{\sqrt{x}-1}{2}\)

= \(\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Để A > 0 ⇔ \(\sqrt{x}\left(\sqrt{x}-1\right)\)> 0

\(\begin{cases} x > 0\\ \sqrt{x}-1>0 \end{cases}\) (vì \(\sqrt{x}\) ≥ 0)

\(x>1\)

Vậy A > 0 ⇔ x > 1

c) Có A = \(\sqrt{x}\left(\sqrt{x}-1\right)\) = \(x-\sqrt{x}\)

= \(x-2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}\)

= \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

Thấy \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\) ∀ x ≥ 0 Hay A ≥ \(-\dfrac{1}{4}\) ∀ x ≥ 0 và x ≠ 1

Dấu '' = '' xảy ra ⇔ \(\sqrt{x}-\dfrac{1}{2}=0\)\(x=\dfrac{1}{4}\) (thỏa mãn điều kiện)

GTNN của A là \(-\dfrac{1}{4}\) tại \(x=\dfrac{1}{4}\)

(Mình xin thay đổi đề bài phần c một chút nhé! Mình nghĩ với x càng lớn thì A sẽ càng lớn nên A không có giá trị lớn nhất)

Học toán vui vẻ! banhqua

27 tháng 10 2018

cô Akai Haruma giúp e với ạ yeu

29 tháng 10 2022

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b: Để A>0 thì -(căn x-1)>0

=>căn x<1

=>0<=x<1

c: \(A=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/4

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để P>0 thì x>1

24 tháng 6 2021

a) đk: \(x\ne0;4\)\(x>0\)

P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Để P < \(\dfrac{1}{2}\)

<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)

<=> \(\sqrt{x}< 2\)

<=> x < 4

<=> 0 < x < 4

24 tháng 6 2021

thanks.

1 tháng 11 2018

Mysterious Person Nguyễn Thanh Hằng Phương An giúp mk với. thanks!!

16 tháng 11 2022

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)

b: Vì x+căn x+1>0

nên A>0

14 tháng 12 2020

https://i.imgur.com/Qx0XV1d.jpg

 

https://i.imgur.com/Qx0XV1d.jpg
https://i.imgur.com/I391EQM.jpg
3 tháng 11 2018

Nguyễn Huy Tú và phương An chắc h o onl đâu .

h bn nên tag DƯƠNG PHAN KHÁNH DƯƠNG ; Nhã Doanh ; Nguyễn Thanh Hằng ...

3 tháng 11 2018

Na : tối mk về mk lm cho , h mk bận rồi

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\inƯ\left(2\right)\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)

c: A<0

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1