K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

\(a,\)\(đkxđ\)của \(A\)\(:\)\(\hept{\begin{cases}x^2-25\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)\left(x+5\right)\ne0\\x\left(x+5\right)\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)

\(đkxđ\)của \(B\)\(:\)\(\hept{\begin{cases}x^2+5x\ne0\\5-x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+5\right)\ne0\\5-x\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)

\(b,\)\(A=\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}=\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\)

\(=\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}\)\(=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}\)

\(B=\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}=\frac{2x-5}{x\left(x+5\right)}-\frac{x+3}{x-5}\)

\(=\frac{\left(2x-5\right)\left(x+5\right)-\left(x-3\right)\left(x^2+5x\right)}{x\left(x-5\right)\left(x+5\right)}\)

\(=\frac{2x^2+5x-25-x^3-2x^2+15x}{x\left(x-5\right)\left(x+5\right)}\)

\(=\frac{-x^3+20x-25}{x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow P=A:B=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}:\frac{x^3+20x-25}{x\left(x+5\right)\left(x-5\right)}\)

\(=\frac{10x-25}{x^3+20x-25}\)

Đề có vấn đề ko vậy babe -.- \(x^3+20x-25\)vẫn phân tích được, nhưng ko rút gọn được -.-

3 tháng 12 2019

Lí do mk ko lm đc là ở chỗ đó đó

1 tháng 1 2018

a)\(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\left(ĐK:x\ne0;-5\right)\)

\(\Leftrightarrow A=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x+5}{5}\)

b)Để A=-4 \(\Leftrightarrow\frac{x+5}{5}=-4\)

                  \(\Leftrightarrow x+5=-20\)

                   \(\Leftrightarrow x=-25\)

1 tháng 1 2018

a).....

\(=\frac{x^2}{5\left(x+5\right)}+\frac{2x-10}{x}+\frac{50+5x}{x\left(x+5\right)}\)                                MTC= 5x (x+5)                 ĐK\(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

\(=\frac{x^2.x}{5x\left(x+5\right)}+\frac{5.\left(2x-10\right).\left(x+5\right)}{5x\left(x+5\right)}+\frac{5.\left(50+5x\right)}{5x\left(x+5\right)}\)

\(=\frac{x^3+\left(10x-50\right).\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+50x-50x-250+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)

\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)

\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

b) A=-4

=>\(\frac{x+5}{5}=-4\)

=> x = -25

c)

d) Để A đạt gt nguyên thì 5\(⋮\)x+5

=> \(\left(x+5\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

*x+5=1 => x=-4 \(\in Z\)

*x+5=-1 => x=-6\(\in Z\)

*x+5=5  => x=0\(\in Z\)

*x+5=-5  => x=-10\(\in Z\)

Vậy...........

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

8 tháng 12 2016

bạn chép đề có sai ko vậy

 

8 tháng 12 2016

umk có

 

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

17 tháng 3 2019

a)     \(ĐKXĐ:x\ne-3;x\ne2\)

b)     \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

vậy \(P=\frac{x-4}{x-2}\)

\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)

\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)

mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)

mà theo ĐKXĐ:  \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)

thay mấy cái kia vào rồi tìm \(x\)

d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)

khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)

9 tháng 1 2020

Đk : \(x\ne5;x\ne0;x\ne4\)

a) ta có:

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)

Thay x= 3 vào biểu thức A , ta được :

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

vậy ..............

b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

c) Ta có :

\(P=A.B\)

\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)

\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)

23 tháng 2 2020

a) Rút gọn :

\(ĐKXĐ:x\ne\pm5\)

Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)

\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)

\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)

Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?