Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
n - 3 | 1 | -1 | 3 | -3 |
n | 4 | 2 | 6 | 0 |
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6
\(A=\frac{x-5}{x^2+2}\\ \)
x=3 => \(A=\frac{3-5}{9+2}\\ =>A=\frac{-2}{11}\)
b) A thuộc Z khi \(x-5⋮x^2+2\\ =>\left(x-5\right)\left(x+5\right)⋮x^2+2\\ =>x^2-10⋮x^2+2\\ =>x^2+2-12⋮x^2+2\)
=>12chia hết cho x2+2
=> x2+2 thuộc U(12)
a)Tại x=3 \(A=\frac{3-5}{3^2+2}=\frac{-2}{9+2}=\frac{-2}{11}\)
b)\(A=\frac{x-5}{x^2+2}=\frac{x^2+2-x^2+3}{x^2+2}=\frac{x^2+2}{x^2+2}-\frac{x^2+3}{x^2+2}=1+\frac{x^2+3}{x^2+2}\)
\(=1+\frac{x^2+2}{x^2+2}+\frac{1}{x^2+2}=1+1+\frac{1}{x^2+2}=2+\frac{1}{x^2+2}\in Z\)
\(\Rightarrow1⋮x^2+2\)
\(\Rightarrow x^2+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x^2\in\left\{-1;-3\right\}\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
\(A=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}\)\(=\frac{-\left(x-3\right)}{x-3}+\frac{5}{x-3}\)\(=-1+\frac{5}{x-3}\)
Để \(A\in Z\) thì \(\left(x-3\right)\inƯ\left(5\right)\)
Ta có: \(Ư\left(5\right)=\left\{-1;1;-5;5\right\}\)
x-3 | -1 | 1 | -5 | 5 |
x | 2 | 4 | -2 | 8 |
Vậy \(x\in\left\{-2;2;4;8\right\}\)
Để A thuộc Z
=> x + 5 chia hết cho x + 3
x + 3 + 2 chia hết cho x + 3
=> 2 chia hết cho x + 3
=> x + 3 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}
Ta có bảng sau :
x + 3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
Để \(\frac{17}{x-2016}\)đạt giá trị lớn nhất thì \(x-2016\)là số nguyên dương nhỏ nhất \(\Rightarrow x-2016=1\)
\(\Rightarrow x=2017\)
a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> x−1∈Ư(7)={1;7;−1;−7}
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
.....